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1. We have

ex =
∞∑

n=0

xn

n!

so replacing x by 2x we get

e2x =
∞∑

n=0

(2x)n

n!
.

It follows that

f(x) =
∞∑

n=0

2n + 1
n!

xn.

2. The Taylor series for tan−1(x) is

∞∑
n=0

(−1)nx2n+1

2n + 1

so replacing x by x3 we get

tan−1(x3) =
∞∑

n=0

(−1)n(x3)2n+1

2n + 1
=
∞∑

n=0

(−1)nx6n+3

2n + 1

It follows that

f(x) = x2 tan−1(x3) =
∞∑

n=0

(−1)n

2n + 1
x6n+5

3. Using the Binomial Expansion, we get

x√
x2 + 4

=
x

2
·
(

1 +
x2

4

)−1/2

=
x

2

∞∑
n=0

(
−1/2

n

)(
x2

4

)n

=
x

2

∞∑
n=0

(
−1/2

n

)
x2n

22n
=
∞∑

n=0

(
−1/2

n

)
x2n+1

22n+1

=
∞∑

n=0

(−1)n · 1 · 3 · 5 · · · (2n− 1)
23n+1n!

x2n+1

1



4. Using the half angle formula

sin2 x =
1− cos(2x)

2
and the binomial expansion for cos(2x)

cos(2x) =
∞∑

n=0

(−1)n(2x)2n

(2n)!

we obtain

f(x) =
1
2
− 1

2

∞∑
n=0

(−1)n22nx2n

(2n)!
=
∞∑

n=1

(−1)n+122n−1

(2n)!
x2n

5. We have

sin−1 x =
∫

(sin−1 x)′dx =
∫

1√
1− x2

dx =
∫

(1− x2)−1/2dx

=
∫ ( ∞∑

n=0

(
−1/2

n

)
(−x2)n

)
dx =

∞∑
n=0

(
−1/2

n

)
(−1)n x2n+1

2n + 1

=
∞∑

n=0

1 · 3 · 5 · · · (2n− 1)
2nn!(2n + 1)

x2n+1

6. We have

tan−1 x =
∞∑

n=0

(−1)nx2n+1

2n + 1
= x− x3

3
+

x5

5
· · ·

so that

x− tan−1 x = x−
(

x− x3

3

)
+ higher order terms =

x3

3
+ higher order terms

It follows that

lim
x→0

x− tan−1 x

x3
= lim

x→0

x3/3
x3

=
1
3
.

7. We have

cos x =
∞∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2
+

x4

4!
− · · ·

so that

1− cos x = 1−
(

1− x2

2

)
+ higher order terms =

x2

2
+ higher order terms.

We also have

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2
+ · · ·

so that

1 + x− ex = 1 + x−
(

1 + x +
x2

2

)
+ higher order terms = −x2

2
+ higher order terms.

It follows that

lim
x→0

1− cos x

1 + x− ex
= lim

x→0

x2/2
−x2/2

= −1



8. We have
lim
x→0

tan x− x

x3
= lim

x→0

T3(x)
x3

where T3(x) is the 3rd Taylor polynomial associated to the function f(x) = tan x− x at
a = 0. We need to compute the first three derivatives of f :

f ′(x) = sec2 x− 1,

f ′′(x) = 2 sec x · sec x tan x = 2 sec2 x tan x,

f ′′′(x) = 4 sec2 x tan2 x + 2 sec4 x

We get
f(0) = 0, f ′(0) = 0, f ′′(0) = 0, f ′′′(0) = 2

so that

T3(x) =
3∑

i=0

f (i)(x)
i!

xi =
2
3!

x3 =
x3

3
.

We conclude that

lim
x→0

tan x− x

x3
= lim

x→0

T3(x)
x3

= lim
x→0

x3/3
x3

=
1
3

9. We have

f(x) =
ex − e−x

2
=

1
2

( ∞∑
n=0

xn

n!
−
∞∑

n=0

(−x)n

n!

)
=
∞∑

n=0

x2n+1

(2n + 1)!
.

The formula for f (n)(x) depends only on the parity of n, hence we can find a uniform
bound for all the derivatives of sinh x on any interval. Taylor’s inequality then proves
that

f(x) = lim
n→∞

Tn(x) for all x

i.e. the Maclaurin series for f(x) represents f(x) for all values of x.

10. We have

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− · · · .

We think of x as a power series, and use division of power series to calculate y. The ratio
between x and the leading term of sin x is 1, so the Division Algorithm yields 1 as the
first term in the series of x/ sin x. Now we subtract 1 · sin x from x, and proceed with
the algorithm:

x− 1 · sin x = x3/6− x5/120 + · · ·

The ratio between the leading term of the new series and the leading term of sin x is
x3/6x = x2/6, so the next term in the expansion of x/ sin x is x2/6. Continuing

(x3/6− x5/120 + · · · )− x2

6
· sin x =

−x5

120
+

x5

6 · 6
+ · · · = 7x5

360
+ · · ·

and we get the third term in the expansion of x/ sin x as 7x5/360x = 7x4/360. In
conclusion,

x

sin x
= 1 +

x2

6
+

7x4

360
+ · · ·



11. We have

ex =
∞∑

n=0

xn

n!

and

ln(1− x) = −
∞∑

n=1

xn

n

so we can use multiplication of power series to get that

ex ln(1− x) = −(1 + x + x2/2! + · · · )(x + x2/2 + x3/3)

= −(x + (1 + 1/2)x2 + (1/3 + 1/2 + 1/2)x3 + · · · ) = −x− 3
2
x2 − 4

3
x2 − · · ·

12. We have
f(1) = ln(3),

f ′(x) =
2

1 + 2x
, f ′(1) =

2
3
,

f ′′(x) =
−4

(1 + 2x)2
, f ′′(1) =

−4
9

,

f ′′′(x) =
16

(1 + 2x)3
, f ′′′(1) =

16
27

,

f (4)(x) =
−96

(1 + 2x)4
.

It follows that

T3(x) =
3∑

n=0

f (n)(x)
n!

(x− 1)n = ln(3) +
2
3

(x− 1)− 2
9

(x− 1)2 +
8
81

(x− 1)3.

We estimate the accuracy of the approximation f(x) ≈ T3(x) via Taylor’s inequality:

|f(x)− T3(x)| ≤ M

4!
|x− 1|4,

where M is such that
|f (4)(x)| ≤M for 0.5 ≤ x ≤ 1.5

We have
|f (4)(x)| = 96

(1 + 2x)4

which is a decreasing function on the interval [0.5, 1.5] (take the derivative), so its max-
imal value is attained at the left endpoint of the interval

|f (4)(x)| ≤ 96
(1 + 2 · 0.5)4

=
96
24

= 6,

and therefore we can take M = 6. Also |x− 1| ≤ 0.5 = 1/2, hence |x− 1|4 ≤ 1/16. We
get

|f(x)− T3(x)| ≤ 6
4!
· 1

16
=

1
64

, for 0.5 ≤ x ≤ 1.5



13. We have f(0) = 0,

f ′(x) = x cos(x) + sin(x), so f ′(0) = 0, f ′′(x) = −x sin(x) + 2 cos(x), so f ′′(0) = 2
f ′′′(x) = −(x cos(x) + sin(x))− 2 sin(x), so f ′′′(0) = 0 and

f (4)(x) = x sin(x)− 4 cos(x), so f (4)(0) = −4

It follows that

T4(x) =
2
2!

x2 − 4
4!

x4 = x2 − x4

6
.

Taylor’s inequality tells us that

|R4(x)| = |f(x)− T4(x)| ≤ M

5!
|x|5

where M is an upper bound for f (5)(x) on the given interval [−1, 1]. We have

|f (5)(x)| = |x cos(x) + 5 sin(x)| ≤ |x| · | cos(x)|+ 5| sin(x)| ≤ 1 · 1 + 5 = 6

so we can take M = 6. Taylor’s inequality becomes

|R4(x)| ≤ 6
120
|x|5

Since |x| ≤ 1 for x ∈ [−1, 1], we get

|R4(x)| ≤ 1
20
|x|5 ≤ 1

20
= 0.05

so the approximation is accurate to within 0.05.

14. We have

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
,

which is an alternating series whose first terms are 1,−x2/2, x4/24,−x6/720. Recall that
for a series

s =
∞∑

n=0

(−1)nan,

with partial sums

sk =
k∑

n=0

(−1)nan,

the Alternating Series Estimation Theorem yields

|s− sk| ≤ |ak+1|.

In our case an =
x2n

(2n)!
, hence

| cos x− (1− x2

2
+

x4

24
)| < |x|

6

720
.

To make the error smaller than 0.005 it suffices to have

|x|6

720
< 0.005⇔ |x| < 6

√
3.6 ≈ 1.24.


