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The Taylor series for tan~!(z) is

so replacing = by z® we get
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It follows that
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Using the Binomial Expansion, we get
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Using the half angle formula
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and the binomial expansion for cos(2z)
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We have
1
_ .1 / 2\—1/2
sin~ "t x = sin™" x)'dx = dl’—/l—l‘ 12dy
J ) Vil RS
B > /—1/2 on = (—1)2 , w2t
/<Z<n>(_x)>dxz<n>(_)2n+l
n=0 n=0
N 1-3:5--(2n—1) o1
4 27n)(2n + 1)
We have - ; .
_ (1)t o
" 1. _ —
an o ;} o + 1 T3t
so that

3 3

r—tan lr =12 — (a; — g;) + higher order terms = % + higher order terms

It follows that
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l—cos z=1- (1 — a;) + higher order terms = % + higher order terms.

We also have

so that
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It follows that
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‘We have
. tan x—=x . T3(x)
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where T3(x) is the 3rd Taylor polynomial associated to the function f(z) =tan x —x at
a = 0. We need to compute the first three derivatives of f:

f(z) = sec® z — 1,

f"(x) = 2sec x-sec xtan x = 2sec’ ztan ,

f"(x) = 4sec® ztan’ z + 2sect

We get
f(0)=0, f(0)=0, f'(0)=0, f"(0) =2
so that ;
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The formula for (™ (z) depends only on the parity of n, hence we can find a uniform
bound for all the derivatives of sinh x on any interval. Taylor’s inequality then proves
that
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i.e. the Maclaurin series for f(x) represents f(xz) for all values of x.
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We think of x as a power series, and use division of power series to calculate y. The ratio
between z and the leading term of sin z is 1, so the Division Algorithm yields 1 as the
first term in the series of x/sin x. Now we subtract 1 -sin z from x, and proceed with
the algorithm:

z—1-sin x=2%/6—2°/120+ - --

The ratio between the leading term of the new series and the leading term of sin z is
23 /62 = 22 /6, so the next term in the expansion of z/sin = is 2/6. Continuing
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and we get the third term in the expansion of z/sin x as 72°/360z = 72%/360. In

conclusion,
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We have

and
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so we can use multiplication of power series to get that
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We estimate the accuracy of the approximation f(z) = T3(x) via Taylor’s inequality:

£() - Ty(e)| < Gyl =11,

where M is such that
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We have
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which is a decreasing function on the interval [0.5,1.5] (take the derivative), so its max-
imal value is attained at the left endpoint of the interval

@) =

96 96

@ %9
POl g e ~

=6,

and therefore we can take M = 6. Also |z — 1| < 0.5 = 1/2, hence |z — 1|* < 1/16. We
get
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We have f(0) =0,
f'(z) = x cos(x) + sin(z), so f(0) =0, f’(x) = —xsin(x) + 2cos(x), so f’(0) =2
1" (z) = —(x cos(x) + sin(z)) — 2sin(z), so f”(0) =0 and
F () = zsin(z) — 4cos(z), so fH(0) = —4

It follows that

Taylor’s inequality tells us that
M
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where M is an upper bound for f(® (x) on the given interval [—1,1]. We have
17O ()| = |z cos(x) + 5sin(z)] < |z| - | cos(z)| + 5|sin(z)] <1-1+5=6
so we can take M = 6. Taylor’s inequality becomes
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Since |z| <1 for z € [—1, 1], we get
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so the approximation is accurate to within 0.05.

We have
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which is an alternating series whose first terms are 1, —22/2, 24/24, —25/720. Recall that
for a series
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the Alternating Series Estimation Theorem yields
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In our case a, = (?n)" hence
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To make the error smaller than 0.005 it suffices to have
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