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1. Let’s first check the initial condition:

y(0) = sin(0) cos(0)− cos(0) = 0 · 1− 1 = −1.

To see that y is a solution of the differential equation, we calculate

y′(x) = sin(x) · (− sin(x)) + cos(x) · cos(x) + sin(x) = − sin2(x) + cos2(x) + sin(x),

tan(x) · y =
sin(x)
cos(x)

· (sin(x) cos(x)− cos(x)) = sin2(x)− sin(x)

from which it follows that

y′ + (tan x)y = − sin2(x) + cos2(x) + sin(x) + sin2(x)− sin(x) = cos2(x).

We thus see that y is a solution of the given initial-value problem.

2. (a) We have y′(t) = −k sin(kt) and y′′(t) = −k2 cos(kt) = −k2y(t). Therefore, in order
for y to satisfy the differential equation

4y′′ = −25y, which is equivalent to y′′ =
−25

4
y

we must have

−k2 =
−25

4
⇔ k2 = (5/2)2 ⇔ k = 5/2 or k = −5/2.

(b) If y = A sin kt+B cos kt then y′ = Ak cos(kt)−Bk sin(kt) and

y′′(t) = −Ak2 sin(kt)−Bk2 cos(kt) = −k2(A sin(kt) +B cos(kt)) =
−25

4
· y(t).

Multiplying both sides by 4 yields 4y′′ = −25y which is the desired differential equation.

3. (a) The polynomial y4−6y3 +5y2 factors as y2(y−1)(y−5). A solution of the differential
equation is constant if and only if its derivative y′ = dy/dt is zero. In our case, we must
have

0 =
dy

dt
= y4 − 6y3 + 5y2 = y2(y − 1)(y − 5)

and we see that the constant solutions are y = 0, y = 1 and y = 5.

(b) y is increasing if and only if y′ = dy/dt ≥ 0, i.e. y2(y − 1)(y − 5) ≥ 0. Since y2 ≥ 0
for all y, we’re interested in finding when the quadratic polynomial (y − 1)(y − 5) is
nonnegative. This holds whenever y is not situated between the roots of the polynomial,
i.e. for y ≤ 1 and for y ≥ 5.

y is decreasing if and only if y′ = dy/dt ≤ 0, and the argument in the previous paragraph
shows that this is possible only when 1 ≤ y ≤ 5.
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4. The solutions to (a) and (b) have nonnegative derivative when x, y lie in the first quad-
rant. But y is not always increasing for x, y > 0 (actually it increases for a while, and
then becomes decreasing), so y′ has to take on negative values. The only possibility is
therefore (c).

5. A direction field for the differential equation y′ = x sin y is shown.

(i) Sketch the graphs of the solutions that satisfy the given initial conditions.

(a) y(0) = 1. (b) y(0) = 2. (c) y(0) = π. (d) y(0) = 4. (e) y(0) = 5.

(ii) Equilibrium solutions, or constant solutions, correspond to y′ = 0. This is equivalent
to sin(y) = 0, which is the same as y = nπ for some integer number n.

6. Let F (x, y) = 1 − xy, and h = 0.2 be the step size. At (x0, y0) = (0, 0), the slope is
F (x0, y0) = F (0, 0) = 1. We now move on the line of slope 1 passing through (0, 0)
h = 0.2 units in the x direction. We get

x1 = x0 + h = 0.2

and
y1 = y0 + h · F (x0, y0) = y0 + h = 0.2.

Now we check the direction field at the new point (x1, y1) = (0.2, 0.2). It indicates that
we have to move along the line with slope F (x1, y1) = 1−0.2 ·0.2 = 0.96 passing through
(x1, y1). We get

x2 = x1 + h = 0.4

and
y2 = y1 + h · F (x1, y1) = 0.2 + 0.2 · 0.96 = 0.392.

Continuing in the same fashion we get

F (x2, y2) = 0.9216, x3 = x2 + h = 0.6, y3 = y2 + h · F (x2, y2) = 0.56064

F (x3, y3) = 0.336384, x4 = x3 + h = 0.8, y4 = y3 + h · F (x3, y3) = 0.6933632

F (x4, y4) = 0.55469056, x5 = x4 + h = 1, y5 = y4 + h · F (x4, y4) = 0.782425088

Therefore, Euler’s method gives us the approximate value y(1) ≈ 0.782425088.



7. Separating the variables and integrating we obtain∫
eydy =

∫ √
xdx.

We get

ey =
x3/2

3/2
+ C =

2x3/2

3
+ C

or equivalently

y = ln

(
2x3/2

3
+ C

)
.

8. Notice first that the constant solution y = 0 satisfies the differential equation. In what
follows, we assume that y 6= 0. Separating the variables and integrating we obtain∫

dy

y2
=
∫

sinxdx.

We get
−1
y

= − cos(x) + C

which is equivalent to

y =
1

cos(x)− C
.

Notice that if we’re looking for solutions defined for all values of x, then − cos(x) +C is
not allowed to be 0, i.e. we must take C outside the interval [−1, 1]: C > 1 or C < −1.

9. Separating the variables and integrating we obtain∫
y2 + 1
y

dy =
∫

cosxdx.

Since ∫
y2 + 1
y

dy =
∫
ydy +

∫
dy

y
=
y2

2
+ ln |y|+K,

we get
y2

2
+ ln |y| = sin(x) + C

for some constant C. To determine C, we use the initial condition y(0) = 1. We obtain

1
2

+ ln(1) = sin(0) + C, which yields C =
1
2
.

It follows that y satisfies the equation

y2

2
+ ln |y| = sin(x) +

1
2
,

and in this case it is impossible to find a nice formula for y.



10. Separating the variables and integrating we obtain∫
x cos(x)dx =

∫
(2y + e3y)dy.

Since ∫
(2y + e3y)dy =

∫
2ydy +

∫
e3ydy = y2 +

e3y

3
+K1,

and ∫
x cos(x)dx = x sin(x) + cos(x) +K2.

(for calculating the last integral, use integration by parts with u = x and dv = cos(x)dx).
We get

x sin(x) + cos(x) = y2 +
e3y

3
+ C

for some constant C. To determine C, we use the initial condition y(0) = 0. We obtain

0 sin(0) + cos(0) = 02 +
e3·0

3
+ C =

1
3

+ C, which yields C = 1− 1
3

=
2
3
.

It follows that y satisfies the equation

x sin(x) + cos(x) = y2 +
e3y

3
+

2
3

and again it is impossible to find a nice formula for y.

11. Differentiating y2 = kx3 we get

2ydy = 3kx2dx⇔ dy

dx
= k

3x2

2y
,

and since k = y2/x3 (from the original equation), we get

dy

dx
=
y2

x3
· 3x2

2y
=

3y
2x
.

The orthogonal trajectories then satisfy the differential equation

dy

dx
=
−1
3y
2x

=
−2x
3y

,

which is separable. We get
3ydy = −2xdx,

and by integration∫
3ydy =

∫
−2xdx⇔ 3

2
y2 = −x2 + C ⇔ y = ±

√
2
3

(−x2 + C).

12. Differentiating y =
x

1 + kx
we get

dy

dx
=

(1 + kx)− x · k
(1 + kx)2

=
1

(1 + kx)2
=
y2

x2
,



The orthogonal trajectories then satisfy the differential equation

dy

dx
=
−x2

y2
,

which is separable. We get
y2dy = −x2dx,

and by integration∫
y2dy =

∫
−x2dx⇔ 1

3
y3 = −1

3
x3 + C ⇔ y = ± 3

√
−x3 + C/3.

13. Let A(t) denote the amount of alcohol at time t, and let c(t) denote the concentration of
alcohol. Since the total mass of the mixture is constantly equal to 500, we get

c(t) =
A(t)
500

, or equivalently A(t) = 500 · c(t).

Since c(0) = 4/100, it follows that A(0) = 500 ·(4/100) = 20. Now to see how the amount
of alcohol changes with time, we note that during 1 minute 5 · c(t) gallons of alcohol exit
the vat, and 5 · (6/100) gallons enter the vat. If follows that

A′(t) =
30
100
− 5c(t) =

30
100
− 5 · A(t)

100
=

30−A(t)
100

.

It follows that A satisfies the differential equation

dA

dt
=

30−A
100

which is a separable equation. Separating variables and integrating we obtain∫
dA

30−A
=
∫

dt

100

or equivalently

− ln |30−A| = t

100
+ C

To determine C, we plug in t = 0, and since A(0) = 20 we obtain C = − ln(10). Since
30 − A cannot be 0 (in order for the above formula to make sense), 30 − A must have
constant sign. But since 30 − A(0) = 10, 30 − A must always be positive. We obtain
|30−A| = 30−A and therefore

− ln(30−A) =
t

100
− ln(10)

or equivalently

ln(30−A) =
−t
100

+ ln(10).

Exponentiating, we obtain

30−A = e
−t
100

+ln(10) = e−t/100 · eln(10)

which yields
A = 30− 10e−t/100.



The amount of alcohol after one hour is therefore A(60), and the concentration

c(60) =
A(60)
500

=
30− 10e−60/100

500
=

3
50
− e−3/5

50

Notice that as t approaches infinity, the concentration of alcohol approaches 6% (which
shouldn’t be too surprising).

14. Let A(t) denote the amount of carbon dioxide at time t, and let c(t) denote its concen-
tration. Since the total amount of air is constantly equal to 180, we get

c(t) =
A(t)
180

, or equivalently A(t) = 180 · c(t).

Since c(0) = 0.15/100 = 0.0015, it follows that A(0) = 180 · 0.0015 = 0.27. Now to
see how the amount of carbon dioxide changes with time, we note that during 1 minute
2 · c(t) cube meters of carbon dioxide flow out of the room, and 2 · (0.05/100) flow into
the room. If follows that

A′(t) = 2 · 0.05
100
− 2c(t) =

1
1000

− 2 · A(t)
180

=
9− 100 ·A(t)

9000
.

It follows that A satisfies the differential equation

dA

dt
=

9− 100 ·A
9000

which is a separable equation. Separating variables and integrating we obtain∫
dA

9− 100A
=
∫

dt

9000

or equivalently

− ln |9− 100A|
100

=
t

9000
+ C

To determine C, we plug in t = 0, and since A(0) = 0.27 we obtain C = − ln |9−27|/100 =
− ln(18)/100. Since 9−100A cannot be 0 (in order for the above formula to make sense),
9− 100A must have constant sign. But since 9− 100A(0) = −18, 9− 100A must always
be nagative. We obtain |9− 100A| = 100A− 9 and therefore

− ln(100A− 9)
100

=
t

9000
− ln(18)

100
or equivalently

ln(100A− 9) =
−t
90

+ ln(18).

Exponentiating, we obtain

100A− 9 = e
−t
90

+ln(18) = e−t/90 · eln(18)

which yields

100A = 9 + 18e−t/90 or equivalently A =
9

100
+

9e−t/90

50
.

The concentration of carbon dioxide is therefore

c(t) =
A(t)
180

=
1

2000
+
e−t/90

1000
As t approaches infinity c(t) approaches 1/2000 = 0.05%.


