Math 1B, Spring '10 Quiz 1, January 27

1. (3 points) Evaluate

$$\int_{1}^{2} \frac{\ln x}{x^2} dx.$$

Proof. Recall the mnemonic we used for integrating by parts: LIATE. Since $\ln(x)$ is a Logarithmic function, and $\frac{1}{x^2}$ is an Algebraic function, we put $u = \ln(x)$, $dv = \frac{1}{x^2}dx$, so that $du = \frac{1}{x}dx$ and $v = \frac{-1}{x}$. From the formula

$$\int_{1}^{2} u dv = uv]_{1}^{2} - \int_{1}^{2} v du$$

we get

$$\begin{split} \int_{1}^{2} \frac{\ln x}{x^{2}} dx &= \ln(x) \frac{-1}{x} \Big]_{1}^{2} - \int_{1}^{2} \frac{-1}{x} \cdot \frac{1}{x} dx \\ &= \frac{-\ln(2)}{2} + \int_{1}^{2} \frac{1}{x^{2}} dx = \frac{-\ln(2)}{2} - \frac{1}{x} \Big]_{1}^{2} \\ &= \frac{-\ln(2)}{2} - \frac{1}{2} + \frac{1}{1} = \frac{1 - \ln(2)}{2} \end{split}$$

2. (4 points) First make a substitution and then use integration by parts to evaluate the integral

$$\int \cos(\sqrt{x})dx.$$

Solution. Make the substitution $y = \sqrt{x}$. We have $y^2 = x$ so after differentiation we get $2y \cdot dy = dx$, thus

$$\int \cos(\sqrt{x})dx = 2\int y\cos(y)dy.$$

Use now integration by parts, with u = y, $dv = \cos(y)dy$, $v = \sin(y)$:

$$\int y \cos(y) dy = y \sin(y) - \int \sin(y) dy = y \sin(y) + \cos(y) + C.$$

It follows that

$$\int \cos(\sqrt{x})dx = 2(\sqrt{x}\sin(\sqrt{x}) + \cos(\sqrt{x})) + C.$$

3. (3 points) Evaluate

$$\int \left(\sin^2(x) + \cos^3(x)\right) dx.$$

1

Proof. We can split the integral into two parts

$$\int \sin^2(x) dx$$
 and $\int \cos^3(x) dx$.

To evaluate the first integral, we use the half angle formula $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.

$$\int \sin^2(x)dx = \frac{1}{2} \int (1 - \cos(2x))dx = \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right) + C.$$

For the second integral, we make the substitution $u = \sin(x)$, so $du = \cos(x)dx$, and use the fact that $\cos^2(x) = 1 - \sin^2(x) = 1 - u^2$. We get

$$\int \cos^3(x) dx = \int \cos^2(x) \cdot \cos(x) dx = \int (1 - u^2) du = u - \frac{u^3}{3} + C = \sin(x) - \frac{\sin^3(x)}{3} + C.$$

Putting these calculations together, we obtain

$$\int (\sin^2(x) + \cos^3(x)) dx = \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right) + \sin(x) - \frac{\sin^3(x)}{3} + C.$$