Math 1B, Spring ’10
Quiz 4, February 17

1. (3 points) Find the length of the curve
y=+Var—22+sin(yz), 0<2 <1

Solution. The length of the curve is given by the arc length formula:
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2. (4 points) Find the area of the surface obtained by rotating the curve
x=§@?+mw%1§ys2
about the x-axis.
Solution. Since we're rotating about the z-axis, the formula for the area is given by
A=2r [ 4/ + (i)

Since we'’re given x in terms of y, we’ll write the integral in terms of the variable y. Notice
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. (3 points) Find the centroid of the region bounded by the curves

y=a’x=y"

Solution. The region is bounded by the graphs of the functions g(z) = z? < f(z) = \/z,
0 < x < 1. The area of this region is
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The coordinates of the center of mass are then given by
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Now since the region is symmetric with respect to the x = y line, the centroid has to be
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contained in this line, hence y = T = 20" Alternatively
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