
Math 1B, Spring ’10
Quiz 4, February 17

1. (3 points) Find the length of the curve
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Solution. The length of the curve is given by the arc length formula:
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We get

L =
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√
1
x
dx = [2

√
x]10 = 2− 0 = 2

2. (4 points) Find the area of the surface obtained by rotating the curve

x =
1
3

(y2 + 2)3/2, 1 ≤ y ≤ 2

about the x-axis.

Solution. Since we’re rotating about the x-axis, the formula for the area is given by

A = 2π
∫
y
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Since we’re given x in terms of y, we’ll write the integral in terms of the variable y. Notice
first that
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therefore
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3. (3 points) Find the centroid of the region bounded by the curves

y = x2, x = y2

Solution. The region is bounded by the graphs of the functions g(x) = x2 ≤ f(x) =
√
x,

0 ≤ x ≤ 1. The area of this region is

A =
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The coordinates of the center of mass are then given by
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1
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Now since the region is symmetric with respect to the x = y line, the centroid has to be

contained in this line, hence y = x =
9
20

. Alternatively
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