Math 1B, Spring ’10
Quiz 5, March 3

1. (3 points) Is the sequence
an = In(2n* 4+ 1) — In(n* 4+ 1)
increasing, decreasing or not monotonic? Determine whether it’s convergent, and if so find
its limit.
Solution. Let f(x) =In(2z% +1) — In(z? 4+ 1). We have
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It follows that the function f(z) is increasing for > 0, hence the sequence a,, = f(n) is
also increasing.

To determine whether the sequence is convergent, notice that
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we get that a, is convergent and
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2. (4 points) Determine whether the series
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is convergent or divergent. If it is convergent, find its sum.

Solution. Let a, = 3/2" and b, = 2/(n? + 2n). Observe that
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is a geometric series with initial term @ = 3/2 and common ratio 7 = 5. Therefore the
series is convergent, and
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To compute > by, notice that
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S0 Y by, is telescoping. We get
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and we see that all terms except for 1 and 3 cancel out. Therefore
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It follows that the initial series can be written as a sum of two convergent series, hence is
itself convergent, and
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. (3 points) Determine whether the series
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is convergent or divergent.
Solution. Let f(x) = xe™®. f is continuous, positive and
fl(z)=e®—ae"=(1—-2)e " <0forz>1

so f is increasing for x < 1. We can therefore apply the Integral Test to conclude that
Yoo ne~ ™ is convergent if and only if the improper integral
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is convergent. To calculate [ze *dx, we use integration by parts, u = z, dv = €77,
du =dx,v=—e"". We get
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The integral is therefore convergent, hence so is the series
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