Math 1B, Section 201, Spring ’10
Quiz 6, March 10

1. (3 points) Determine whether the series
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is convergent or divergent.
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the term n?, and the rate of growth of the denominator is controlled by the term n%. We
conclude that as n goes to infinity, a, is roughly n?/ Vnb =1 /m. This suggests the use of
the Limit Comparison Test, with b, = 1/n. We have
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(the last equality follows by canceling n® and observing that asn — oo, 1/n%,1/n,1/n%,1/n* —
0).

It follows by the Limit Comparison Test that the series » -, a, and ), -, b, behave the
same. The latter series is the Harmonic Series, which is divergent, hence ) -, a, is also
divergent. 0

Solution. Let a, = The rate of growth of the numerator is controlled by

2. (4 points) Determine whether the series
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is absolutely convergent, conditionally convergent, or divergent.
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starting with the second term, because the function f(z) = z2/(2® + 4) has negative
derivative for x > 2:

Solution. Let a,, = We have lim,,_.o a, = 0 and the sequence a,, is decreasing
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It follows by the Alternating Series Test that the series
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is convergent. However, the series is not absolutely convergent. To see this, notice that a,,
is roughly n?/n® = 1/n as n approaches infinity. Using the Limit Comparison Theorem
with b, = 1/n, we get
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hence )", -, a, behaves like the Harmonic Series, and is therefore divergent.

We conclude that the series -
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is conditionally convergent. O
. (3 points) Determine whether the series
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is convergent or divergent.

Solution. We will use the Ratio Test to prove the convergence of the series. If we let
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According to the Ratio Test, Z an = Z s is convergent. O
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