Math 1B, Section 205, Spring ’10
Quiz 7, March 17

1. (3 points) Determine whether the series
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is convergent or divergent.
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First solution. Let a,, = W We use the Ratio Test:
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It follows that the series is absolutely convergent, hence convergent.
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Second solution. Let a, = W We use the Root Test:
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It follows that the series is absolutely convergent, hence convergent.

2. (4 points) Find the radius of convergence and the interval of convergence of the series
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Solution. We let
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and use the Ratio Test to determine the radius of convergence. We have
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According to the Ratio Test, convergence of the series holds for |1 — z| < 1 (which is the
same as |x —1] < 1). It follows that the radius of convergence is equal to 1, and the interval
of convergence contains the interval (1—1,1+1) = (0,2). In order to compute the interval
of convergence, we only need to test whether the series is convergent or divergent when
xz=0,2.

If x =0 we get
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This behaves the same as — = — (Limit Comparison Test - you need to provide
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the missing details here..what is the series you compare to, why is this series divergent,
why does it behave the same as the original series?), which is divergent by the p-series
test.

If x =2 we get
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which is convergent by the Alternating Series Test (you need to provide the missing details
here..decreasing, positive).

In conclusion, the radius of convergence is R = 1 and the interval of convergence is
I=10,2].

Homework: repeat the proof using the Root Test instead of the Ratio Test (you’ll have to
prove that lim, .o Vn2+1=1). O

. (3 points) Find the power series representation for
f(x) = arctan(x/3).

Solution. We have

To determine C, we plug in x = 0 and get f(0) =0+ C, i.e. C' = 0. It follows that
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