Math 1B, Section 201, Spring ’10
Quiz 8, March 31

1. (3 points) Evaluate the indefinite integral
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Solution. Using the Binomial Expansion, we get
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It follows that
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Remark. Using the fact that
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you can rewrite the last series as
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which shouldn’t be a surprise, since you know that [ \/;237% z = V22 + 4 up to a constant.
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2. (4 points) Use series to evaluate the limit
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Solution. Using Taylor’s inequality we have that
sin x — T5(x)
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The Taylor expansion of sin x is
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It follows that

and therefore
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. (3 points) Approximate f(x) = xIn(x) by a Taylor polynomial of degree n = 3 at the
number a = 1. Use Taylor’s inequality to estimate the accuracy of the approximation
f(z) = T3(x) when z lies in the interval [0.5,1.5].

Solution. We have f(1) =1-In(1) =0,

fl(x)y==- % +In(z) =1+ In(x), so f/(1)=1+1In(1) =1

F() =+, s0 (1) = Land f"(x) = 5, s0 (1) = 1
It follows that
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Taylor’s inequality tells us that
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where M is an upper bound for f® (z) on the given interval [0.5,1.5]. We have
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which is decreasing and positive on the interval [0.5,1.5], so its maximal value is attained
at the left endpoint of the interval, x = 0.5. We can then take
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so that Taylor’s inequality becomes
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Since |z — 1| < 0.5 for z € [0.5,1.5], we get
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so the approximation is accurate to within 1/24 ~ 0.0416. ]



