
Math 1B, Section 201, Spring ’10
Quiz 8, March 31

1. (3 points) Evaluate the indefinite integral∫
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Solution. Using the Binomial Expansion, we get
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It follows that∫
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you can rewrite the last series as
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which shouldn’t be a surprise, since you know that
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2. (4 points) Use series to evaluate the limit
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Solution. Using Taylor’s inequality we have that
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The Taylor expansion of sin x is
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It follows that
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and therefore
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3. (3 points) Approximate f(x) = x ln(x) by a Taylor polynomial of degree n = 3 at the
number a = 1. Use Taylor’s inequality to estimate the accuracy of the approximation
f(x) ≈ T3(x) when x lies in the interval [0.5, 1.5].

Solution. We have f(1) = 1 · ln(1) = 0,

f ′(x) = x · 1
x

+ ln(x) = 1 + ln(x), so f ′(1) = 1 + ln(1) = 1
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It follows that
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Taylor’s inequality tells us that

|R3(x)| = |f(x)− T3(x)| ≤ M

4!
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where M is an upper bound for f (4)(x) on the given interval [0.5, 1.5]. We have
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2
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which is decreasing and positive on the interval [0.5, 1.5], so its maximal value is attained
at the left endpoint of the interval, x = 0.5. We can then take
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so that Taylor’s inequality becomes
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Since |x− 1| ≤ 0.5 for x ∈ [0.5, 1.5], we get
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so the approximation is accurate to within 1/24 ≈ 0.0416.
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