Name: _			
Instructo	r:		

Math 20550, Exam 1, Practice September 22, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE MARK	YOUR A	NSWERS WITH	AN X, not	a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total		

Name: _______
Instructor: _____

Multiple Choice

1.(6 pts) Let $\mathbf{a} = \langle 1, 2, 0 \rangle$, $\mathbf{b} = \langle 3, 1, -1 \rangle$, and let $\mathbf{c} = \operatorname{proj}_{\mathbf{a}} \mathbf{b}$ be the vector projection of \mathbf{b} onto \mathbf{a} . Which one of the following vectors is orthogonal to $\mathbf{b} - \mathbf{c}$?

- (a) (0, 1, 1)
- (b) $\langle 2, 1, -1 \rangle$
- (c) $\langle 1, 2, 0 \rangle$

- (d) $\langle 2, 1, 0 \rangle$
- (e) $\langle 1, 0, 1 \rangle$

2.(6 pts) Find the radius of the sphere given by the equation $x^2 + y^2 + z^2 - 6x + 4z + 7 = 10.$

- (a) 3
- (b) 9
- (c) -4
- (d) 2
- (e) 4

Instructor:

3.(6 pts) A particle moves with the position function $\mathbf{r}(t) = \langle t^2, -t, 2 \rangle$. Find the normal component of acceleration.

- (a) $a_N = \frac{2}{\sqrt{1+4t^2}}$ (b) $a_N = 4t$ (c) $a_N = 2$ (d) $a_N = \frac{4t}{\sqrt{1+4t^2}}$ (e) $a_N = \sqrt{1+4t^2}$

4.(6 pts) Find the volume of the parallelepiped determined by the vectors $\mathbf{a} = \langle 1, 2, 2 \rangle$, $\mathbf{b} = \langle 3, 2, 2 \rangle$, and $\mathbf{c} = \langle 7, 3, 1 \rangle$.

- (a) -4 (b) 8 (c) 3 (d) -8 (e) 4

Name:

Instructor:

5.(6 pts) Where does the line with parametric equations

$$x = -1 + 3t$$
 $y = 2 - 2t$ $z = 3 + t$

$$y = 2 - 2t$$

$$z = 3 + t$$

intersect the plane 3x + y - 4z = -4?

- they do not intersect (b) (-3, -3, -2) (c) (8, -4, 6)(a)

- (d)
- (-10, 8, 0) (e) (0, 0, 1)

6.(6 pts) Find symmetric equations for the line through the point (1, -2, -4) which is orthogonal to the plane 2x - y + 3z = 18.

(a)
$$\frac{x+1}{2} = \frac{y-2}{1} = \frac{z-4}{3}$$

(b)
$$\frac{x-1}{2} = \frac{-y-2}{-1} = \frac{z+4}{3}$$

(c)
$$\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$$

(d)
$$\frac{x-1}{\sqrt{14}} = \frac{-y-2}{\sqrt{14}} = \frac{z+4}{\sqrt{14}}$$

(e)
$$\frac{1+2x}{\sqrt{14}} = \frac{-y-2}{\sqrt{14}} = \frac{-4+3z}{\sqrt{14}}$$

Name: Instructor:

7.(6 pts) Find the position $\mathbf{r}(1)$ of a particle at time y=1 if it has acceleration $\mathbf{a}(t) = e^t \mathbf{i} - 6t \mathbf{k}$, the initial position of the particle is $\mathbf{r}(0) = \langle 1, 0, -1 \rangle$ and the initial velocity is $\mathbf{v}(0) = \langle 1, 1, 0 \rangle$.

- (a) $\mathbf{r}(1) = \langle 1, 0, 1 \rangle$ (b) $\mathbf{r}(1) = \langle e, 0, 0 \rangle$ (c) $\mathbf{r}(1) = \langle e, 1, -1 \rangle$
- (d) $\mathbf{r}(1) = \langle e, 1, -2 \rangle$ (e) $\mathbf{r}(1) = \langle 0, 1, 2 \rangle$

8.(6 pts) Which of these is an equation of the tangent line to the curve

$$\mathbf{r}(t) = \langle t^2 + 2t + 3, 4t\cos(t), 2e^{3t} \rangle$$

at the point where t = 0?

- (a) $\langle x, y, z \rangle = \langle 3, 4, 2e \rangle + t \langle 2, 0, 6e \rangle$ (b) $\langle x, y, z \rangle = \langle 3, 0, 2 \rangle + t \langle 1, 2, 3 \rangle$
- (c) $\langle x, y, z \rangle = \langle 3, 0, 2 \rangle + t \langle 1, -2, 3 \rangle$ (d) $\langle x, y, z \rangle = \langle 3, 4, 2 \rangle + t \langle 1, 2, 3 \rangle$
- (e) $\langle x, y, z \rangle = \langle 3, 0, 2e \rangle + t \langle 2, 4, 6 \rangle$

Name:

Instructor:

9.(6 pts) Which of the following expressions gives the length of the curve defined by $\mathbf{r}(t) = t^2 \mathbf{i} - \mathbf{j} + \ln t \, \mathbf{k}$ between the points (1, -1, 0) and $(e^2, -1, 1)$?

- (a) $\int_1^{e^2} \sqrt{4t^2 + 1/t^2} \, dt$
- (b) $\int_1^e \sqrt{t^2 + 1 + \ln^2 t} \, dt$

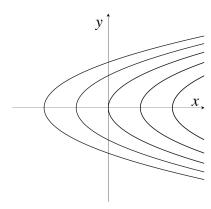
(c) $\int_0^1 \sqrt{2t + \ln t} \, dt$

(d) $\int_1^e \sqrt{2t + \ln t} \, dt$

(e) $\int_{1}^{e} \sqrt{4t^2 + 1/t^2} \, dt$

10.(6 pts) Which one of the following functions has level curves drawn below?

- (a) $f(x,y) = y^2 + x$ (b) $f(x,y) = y + x^2$ (c) $f(x,y) = y x^2$
- (d) $f(x,y) = y^2 x$ (e) $f(x,y) = y^2 x^2$



Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Find an equation for the line of intersection of the planes 3x - y + z = 0 and 2x - 3y + z = 0.

Name:	
Instructor:	

12.(12 pts.) The position function of a moving object is $\mathbf{r}(t) = t^2 \mathbf{i} - \mathbf{j} + \ln t \, \mathbf{k}$.

- (a) Find the unit tangent vector \mathbf{T} , the principal normal vector \mathbf{N} , and the bi-normal vector \mathbf{B} at t=1.
- (b) Find an equation of the normal plane at t = 1.
- (c) Find an equation of the osculating plane at t = 1.

Name:	
Instructor:	

13.(12 pts.) Find the distance from the point (-4, 1, 4) to the plane containing the points P(0, 0, 3), Q(1, 1, 3), and R(1, 0, -1).