Name:	
Instructor:	

Math 20550, Practice Exam 2 October 26, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE N	MARK YOUR ANS	WERS WIT	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Name: ______Instructor:

Multiple Choice

1.(6 pts) Let f(x,y) be a function where (1,3) and (-1,0) are critical points. We also know that $f_{xx}(1,3) = 1$, $f_{x,y}(1,3) = 2$, $f_{yy}(1,3) = 1$ and $f_{xx}(-1,0) = 2$, $f_{x,y}(-1,0) = -1$, $f_{yy}(-1,0) = 3$. Using the second derivative test classify the points (1,3) and (-1,0).

- (a) both are local minimums
- (b) (1,3) is a saddle point; (-1,0) is a local minimum
- (c) (1,3) is a saddle point; (-1,0) is a local maximum
- (d) both are saddle points
- (e) (1,3) is a local maximum; (-1,0) is a local minimum

2.(6 pts) Use implicit differentiation to find $\partial z/\partial x$ when $xz + z^2 = y$.

(a)
$$\frac{\partial z}{\partial x} = \frac{-z}{x + 2z}$$

(b)
$$\frac{\partial z}{\partial x} = \frac{y}{x+z}$$

(c)
$$\frac{\partial z}{\partial x} = \frac{-x}{2z}$$

(d)
$$\frac{\partial z}{\partial x} = \frac{y-z}{x+2z}$$

(e)
$$\frac{\partial z}{\partial x} = \frac{y - x}{2z}$$

Name: Instructor:

3.(6 pts) Find the directional derivative of $f(x,y) = xe^{-2y}$ at the point (1,0) in the direction $\langle 1, 3 \rangle$.

- (a) $\frac{-5}{\sqrt{10}}$

- (b) 0 (c) -4 (d) $\frac{-1}{2}$ (e) $\sqrt{10}$

4.(6 pts) Consider the two surfaces S_1 : y + z = 4 and S_2 : $z = 2x^2 + 3y^2 - 12$. Find the tangent line to the intersection curve of S_1 and S_2 at the point (1, 2, 2).

- (a) $\langle x, y, z \rangle = \langle 11t, -4t, 4t \rangle + \langle 1, 2, 2 \rangle$
- (b) $\langle x, y, z \rangle = \langle -11t, 4t, -4t \rangle + \langle -1, -2, -2 \rangle$
- (c) $\langle x, y, z \rangle = \langle -11t, 4t, -4t \rangle + \langle 1, 2, 2 \rangle$
- (d) $\langle x, y, z \rangle = \langle -13t, 4t, -4t \rangle + \langle -1, -2, -2 \rangle$
- (e) $\langle x, y, z \rangle = \langle -13t, 4t, -4t \rangle + \langle 1, 2, 2 \rangle$

Name: _____ Instructor:

5.(6 pts) Let f(x,y) be a function of x(s,t)=st and y(s,t)=2s+t. If you know that $f_x(1,3) = 2$ and $f_y(1,3) = -3$ then what is $\partial f/\partial s$ at when s = 1 and t = 1?

(a) -1

not enough information to determine the value (b)

(c) 3

(d)

(e) 0

6.(6 pts) Find a point on the surface $z = x^2 - y^3$ where the tangent plane is parallel to the plane x + 3y + z = 0.

- no such point exists (b) (-1/2, 1, -3/4) (c) (1, 1, 0)(a)

- (d)
- (-1/2, 1, 1) (e) (-1/2, 1, -5/2)

Name: _____ Instructor:

7.(6 pts) Let f be the function $f(x,y,z) = \sin(xyz)$. From the point (1,1,0) in which direction should one move in order to attain the maximum rate of change.

(a)
$$\frac{1}{\sqrt{2}}\langle 1, 1, 0 \rangle$$
 (b) $\langle 0, 0, 1 \rangle$ (c) $\frac{1}{\sqrt{2}}\langle 0, 0, 1 \rangle$ (d) $\langle 0, 0, 0 \rangle$ (e) $\langle 1, 1, 1 \rangle$

8.(6 pts) Find the absolute maximum value of the function $f(x,y,z) = xy + \frac{z^2}{2}$ under the two constraints y - 2z = 0 and x + z = -1.

- (a) $\frac{22}{9}$ (b) $\frac{-2}{9}$ (c) $\frac{2}{3}$ (d) $\frac{2}{9}$ (e) $\frac{-1}{2}$

Name: _______
Instructor: ______

9.(6 pts) Which of the following integrals represents the volume of the solid delimited by $y=0,\ y=1,\ x=0,\ x=2,\ z=0$ and $z=x^2y+y^3.$

- (a) $\int_0^2 \int_0^1 (x^2y + y^3) \, dy dx$
- (b) $\int_0^2 \int_0^1 (-x^2y y^3) \, dx \, dy$
- (c) $\int_0^2 \int_0^1 (-x^2y y^3) \, dy dx$
- (d) $\int_0^2 \int_0^1 (x^2y + y^3) \, dx \, dy$
- (e) $\int_{1}^{2} \int_{0}^{1} (x^{2}y + y^{3}) dy dx$

10.(6 pts) Compute $\iint_R 24xy \, dA$ where R is the region bounded by x=1, x=2, y=x, and $y=x^2.$

- (a) 62
- (b) 128
- (c) 64
- (d) 48
- (e) 81

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Find the absolute maximum and absolute minimum values of the function f(x,y)=x-3y subject to the constraint $x^2+2y^2=3$.

Name:	
Instructor:	

12.(12 pts.) Consider the iterated integral $\int_0^2 \int_{y^2}^4 y^3 e^{x^3} dx dy$.

- (a) Sketch the region of integration.
- (b) Rewrite the integral with the order of integration reversed.
- (c) Compute the value of the iterated integral.

Name:	
Instructor:	

13.(12 pts.) Determine the absolute maximum and minimum values of the function $f(x,y)=x^2y-xy+x$ on the region $0\leq x\leq 2,\,-2\leq y\leq 0.$