Name:	
Instructor:	

$\begin{array}{c} \text{Math 20550, Old Exam 2} \\ \text{October 26, 2017} \end{array}$

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE N	MARK YOUR ANS	WERS WIT	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Extra Points.	_4
Total:	

Multiple Choice

1.(6 pts) Find the absolute maximum and minimum of $f(x, y) = 4y + x^2 - 2x + 1$ on the closed triangular region with vertices (0, 0), (2, 0) and (0, 2).

- (a) maximum value = 9, minimum value = 0
- (b) maximum value = 4, minimum value = 0
- (c) maximum value = 8, minimum value = 1
- (d) maximum value = 1, minimum value = 0
- (e) maximum value = 10, minimum value = -1

2.(6 pts) Find the equation of the tangent plane to the surface $xz + \ln(2x + y) = 5$ at the point (-1, 3, -5).

(a)
$$3x + y - z - 5 = 0$$

(b)
$$-4x + y - z - 4 = 0$$

(c)
$$4x - y + z + 12 = 0$$

(d)
$$5x - y + z + 13 = 0$$

(e)
$$-3x + y - z - 11 = 0$$

3.(6 pts) If z = f(x, y), where f is differentiable, and $x = g(t), y = h(t), g(1) = 3, h(1) = 4, g'(1) = -2, h'(1) = 5, f_x(3, 4) = 7$ and $f_y(3, 4) = 6$. Find dz/dt when t = 1.

- (a) 13
- (b) 44
- (c) 32
- (d) 23
- (e) 16

4.(6 pts) Find the directional derivative of the function $f(x,y) = x^2 + y^3$ at the point (2,1) in the direction <1,1>

- (a) $\frac{3}{\sqrt{2}}$
- (b) 7
- (c) None of the above
- (d) $\frac{7}{\sqrt{2}}$
- (e) 3

5.(6 pts) For a function f(x,y), suppose that $f_{xx} = x^2$ and $D(x,y) = f_{xx}f_{yy} - f_{xy}^2 = x^2y^2 - 2$. Which is true for the points P(1,1) and Q(1,2) where P and Q are critical points of f.

- (a) P is a local min and Q is a local max.
- (b) P is a local max and Q is a local min.
- (c) P is a saddle point and Q is a local min.
- (d) None of the above
- (e) P is a saddle point and Q is a local max.

6.(6 pts) What is the equation of the tangent line to the curve of intersection between the two surfaces defined by $z = x^2 + y^2$ and $x^2 + 2y^2 + z^2 = 7$ at the point (-1, 1, 2).

- (a) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle 1, 2, 1 \rangle$
- (b) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle 12, 10, -4 \rangle$
- (c) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle -2, 2, 1 \rangle$
- (d) None of the above
- (e) $\langle x, y, z \rangle = \langle -1, 1, 2 \rangle + t \langle -2, 4, 4 \rangle$

7.(6 pts) Find the maximum rate of change of $f(x,y) = 3e^{xy}$ at the point (2,0) and the direction in which it occurs.

- (a) Rate of change = $\sqrt{3}$ in the direction $\langle 1, 0 \rangle$
- (b) Rate of change = 36 in the direction $\langle -1, 0 \rangle$
- (c) Rate of change = 3 in the direction $\langle 1, 1 \rangle$
- (d) Rate of change = $\sqrt{6}$ in the direction $\langle 1, -1 \rangle$
- (e) Rate of change = 6 in the direction (0, 1)

8.(6 pts) Find absolute maximum and minimum of 3x - y - 3z subject to the constraints x + y - z = 0 and $x^2 + 2z^2 = 6$.

- (a) Max=12, Min=-12
- (b) Max=6, Min=-1
- (c) Max=15, Min=5

- (d) Max= $3\sqrt{5}$, Min=0
- (e) Max=5, Min= $-3\sqrt{5}$

9.(6 pts) Evaluate the iterated integral

$$\int_0^2 \int_y^{2y} 2xy \, dx \, dy.$$

- (a) 5
- (b) 3
- (c) 12
- (d) 4
- (e) 2

10.(6 pts) Which integral represents the volume of the solid below the plane x+y+z=3 and over the rectangle $[0,2]\times[0,1]$.

(a)
$$\int_0^1 \int_0^2 3 - x - y \, dy dx$$

(b)
$$\int_0^1 \int_0^2 x + y + z \, dy dx$$

(c)
$$\int_0^2 \int_0^1 x + y + z \, dy dx$$

(d)
$$\int_0^2 \int_0^1 1 \, dy dx$$

(e)
$$\int_0^2 \int_0^1 3 - x - y \, dy dx$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts) Find all critical points of $f(x,y) = x^3 - xy + y^2/2$ and classify them using the second derivative test.

Name:	
Instructor:	

12.(12 pts) Use Lagrange Multipliers to find extrema values of the function $f(x,y) = 2x^3 - y^3$ subject to the contraint $x^2 + y^2 = 5$.

Name:	
Instructor:	

13.(12 pts) Find the volume of the solid that lies under the graph of $f(x,y) = xe^{xy}$ and above the rectangle $R = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$.