M20550 Calculus III Tutorial Worksheet 2

1. Find an equation of the plane passes through the point $(1,1,-7)$ and perpendicular to the line $x=1+4 t, y=1-t, z=-3$.

Solution: To write an equation of a plane, we need one point on the plane and a normal vector (a vector that is perpendicular to the plane).
In this problem, we have the point $(1,1,-7)$ on the plane. Now, we need to find a normal vector. We know our plane is perpendicular to the line $x=1+4 t, y=1-t$, $z=-3$. So, the parallel vector to this line, which is $\mathbf{v}=\langle 4,-1,0\rangle$, can be used as the normal vector to our plane.

Finally, an equation of the plane with normal vector $\langle 4,-1,0\rangle$ passing through $(1,1,-7)$ is given by

$$
\begin{aligned}
\langle 4,-1,0\rangle \cdot\langle x, y, z\rangle & =\langle 4,-1,0\rangle \cdot\langle 1,1,-7\rangle \\
\Longrightarrow 4 x-y & =3 .
\end{aligned}
$$

2. Let ℓ be the line of intersection of the planes given by equations $x-y=1$ and $x-z=1$. Find an equation for ℓ in the form $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.

Solution: To write an equation of the line ℓ, we need to find one point on ℓ and a parallel vector to ℓ.

Since ℓ is the line of intersection of two planes, to find a point on ℓ, we need to find a point that contained in both planes. A point on both planes can be found by setting $x=1$, so $y=z=0$. And we get the point $(1,0,0)$ on ℓ.

A normal vector for the first plane is $\langle 1,-1,0\rangle$ and a normal vector for the second plane is $\langle 1,0,-1\rangle$. A parallel vector of ℓ is a vector perpendicular to the normal vectors of both planes. Thus, a parallel vector of ℓ is given by

$$
\langle 1,-1,0\rangle \times\langle 1,0,-1\rangle=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|=\langle 1,1,1\rangle .
$$

Hence, the vector equation of ℓ is

$$
\mathbf{r}(t)=\langle 1,0,0\rangle+t\langle 1,1,1\rangle
$$

3. How many times does the particle $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$ hit the plane $2 x+2 y+3 z=3$? What is the point(s) of intersection?

Solution: (a) We have $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$. So the x, y, z-coordinates of the particle are given by:

$$
x=t^{2}+1, \quad y=2 t^{2}-1, \quad z=2-3 t^{2} .
$$

If the particle hits the plane, the x, y, z-coordinates of the particle have to satisfy the equation $2 x+2 y+3 z=3$. Thus, we get the equation

$$
\begin{aligned}
2\left(t^{2}+1\right)+2\left(2 t^{2}-1\right)+3\left(2-3 t^{2}\right) & =3 \\
2 t^{2}+2+4 t^{2}-2+6-9 t^{2} & =3 \\
-3 t^{2}+6 & =3 \\
t^{2} & =1 \\
t & =1 \quad \text { or } \quad t=-1
\end{aligned}
$$

Thus, the particle hits the plane twice. And with $t=1$, we get $x=1^{2}+1=2$, $y=2(1)^{2}-1=1, z=2-3(1)^{2}=-1 \Longrightarrow(2,1,-1)$.
With $t=-1, x=(-1)^{2}+1=2, y=2(-1)^{2}-1=1, z=2-3(-1)^{2}=-1 \Longrightarrow$ $(2,1,-1)$. So, we only have one point of intersection, that is $(2,1,-1)$.
4. Let P be a plane with normal vector $\langle-2,2,1\rangle$ passing through the point $(1,1,1)$. Find the distance from the point $(1,2,-5)$ to the plane P.

Solution: Let's make a vector \mathbf{b} from the point $(1,1,1)$ to the point $(1,2,-5)$:

$$
\mathbf{b}=\langle 1-1,2-1,-5-1\rangle=\langle 0,1,-6\rangle .
$$

Then, the distance D from the point $(1,2,-5)$ to the plane P is given by

$$
D=\left|\operatorname{comp}_{\mathbf{n}} \mathbf{b}\right|=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}=\frac{|\langle-2,2,1\rangle \cdot\langle 0,1,-6\rangle|}{|\langle-2,2,1\rangle|}=\frac{|-4|}{\sqrt{(-2)^{2}+2^{2}+1^{2}}}=\frac{4}{3} .
$$

5. Find an equation of the plane that passes through the point $(1,2,3)$ and contains the line $\frac{1}{3} x=y-1=2-z$.

Solution: For this problem, in order to find a normal vector of the plane, we first need to find two vectors on the plane then take their cross product.
One vector that lies on the plane is a parallel vector of the line $\frac{1}{3} x=y-1=2-z$ (because this line is contained in the plane). Note that $\frac{1}{3} x=y-1=2-z \Longleftrightarrow$ $\frac{x-0}{3}=\frac{y-1}{1}=\frac{z-2}{-1}$. So, a parallel vector of this line is $\mathbf{v}_{\mathbf{1}}=\langle 3,1,-1\rangle$. Thus, we have $\mathbf{v}_{\mathbf{1}}=\langle 3,1,-1\rangle$ lies on the plane.

To get another vector on the plane, we take one point on the line and make a vector with the point on the plane $(1,2,3)$. One point on the line $\frac{x-0}{3}=\frac{y-1}{1}=\frac{z-2}{-1}$ is $(0,1,2)$. So, we get the second vector $\mathbf{v}_{\mathbf{2}}$ on the plane, $\mathbf{v}_{\mathbf{2}}=\langle 1-0,2-1,3-2\rangle=$ $\langle 1,1,1\rangle$.

Then, a normal vector is given by

$$
\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & -1 \\
1 & 1 & 1
\end{array}\right|=\langle 2,-4,2\rangle .
$$

So, the equation of the required plane is

$$
\begin{aligned}
\langle 2,-4,2\rangle \cdot\langle x, y, z\rangle & =\langle 2,-4,2\rangle \cdot\langle 1,2,3\rangle \\
\Longrightarrow 2 x-4 y+2 z & =0 \\
\Longrightarrow x-2 y+z & =0
\end{aligned}
$$

6. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=9$ and the plane $x+y-z=5$.

Solution: To find a vector function that represents the curve of intersection, we need to be able to describe x, y, z in terms of t for this curve.
On the $x y$-plane, $x^{2}+y^{2}=9$ represents a circle centers at the origin with radius 3 . So, we can write the parametric equations for this circle as follows:

$$
x=3 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq 2 \pi .
$$

And from the equation of the plane, we get

$$
z=x+y-5 \Longrightarrow z=3 \cos t+3 \sin t-5, \quad 0 \leq t \leq 2 \pi .
$$

So, a vector function that represents the curve of intersection is given by

$$
\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}+(3 \cos t+3 \sin t-5) \mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

