M20550 Calculus III Tutorial Worksheet 5

- 1. Let $f(x, y, z) = x^3 y^2 z$. If $\mathbf{v} = \langle 1, 0, 1 \rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point (1, 1, 1). At what rate is f changing at the given point as we move in the direction of \mathbf{v} ? Is f increasing or decreasing in this instance?
- 2. Find the tangent plane and the normal line to the surface $x^2 + y^2 = 2z^2$ at the point P = (1, 1, 1).
- 3. Write an equation of the tangent line to the curve of intersection between the two surfaces defined by $z = 2x^2 + y^2$ and $x^2 + 3y^2 + 2z^2 = 22$ at the point (1, 1, 3).

Hint: Think about the geometry of the gradient vectors. You don't have to parametrize the curve to do this problem.

- 4. Find the local maximum and the local minimum value(s) and saddle point(s) of the function $z = 3x^2 6xy + 2y^3 + 1$.
- 5. Identify the absolute maximum and absolute minimum values attained by $g(x, y) = x^2y x^2$ within the triangle T bounded by the points P(0,0), Q(2,0), and R(0,4).
- 6. Identify the absolute maximum and absolute minimum values attained by z = xy + 1on the region $R = \{(x, y) | x^2 + y^2 \le 1\}$.
- 7. Find the absolute maximum of f(x, y, z) = xyz subject to the constraint $x^2 + y^2 + 2z^2 = 9$, assuming that x, y, and z are nonnegative.

Optional/Review Problems:

- 8. (Chain Rule) If $h = x^2 + y^2 + z^2$ and $y \cos z + z \cos x = 0$, find $\frac{\partial h}{\partial x}$ assuming that x and y are the independent variables.
- 9. (Chain Rule) If $h = x^2 + y^2 + z^2$ and $y \cos z + z \cos x = 0$, find $\frac{\partial h}{\partial x}$ assuming that x and z are the independent variables.

More Optional/Review Problems:

10. (Chain Rule) Find
$$\frac{dz}{dt}$$
 when $t = 2$, where $z = x^2 + y^2 - 2xy$, $x = \ln(t-1)$ and $y = e^{-t}$.

11. (Chain Rule) Let r = r(x, y), x = x(s, t), and y = y(t). Find $\frac{\partial r}{\partial t}$ at (s, t) = (1, 0), given

$$\begin{aligned} x(1,0) &= 2, & x_s(1,0) = -1, & x_t(1,0) = 7, \\ y(0) &= 3, & y(1) = 0 & y'(0) = 4, \\ r(2,3) &= -1, & r_x(2,3) = 3, & r_y(2,3) = 5, \\ r_x(1,0) &= 6, & r_y(1,0) = -2, \end{aligned}$$

- 12. (Chain Rule) A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is *decreasing* at a rate of 3m/s, calculate the rate at which the radius is changing when the radius is 2m and the length is 1m. (Note: An incompressible fluid is a fluid whose volume does not change.)
- 13. (Gradient) Find all the critical points of $f(x, y) = y^3 + 3x^2y 6x^2 6y^2 + 2$.
- 14. (Gradient) Find <u>all</u> points where $\mathbf{i} + \mathbf{j}$ is the direction of fastest change for $f(x, y) = x^2 + y^2 2x 4y$.