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M20550 Calculus III Tutorial
Worksheet 5

1. Let f(x, y, z) = x3 − y2z. If v = 〈1, 0, 1〉, find the directional derivative of f in the
direction of v at the point (1, 1, 1). At what rate is f changing at the given point as we
move in the direction of v? Is f increasing or decreasing in this instance?

Solution: The directional derivative of f in the direction of v at the point (1, 1, 1),

denote Duf(1, 1, 1) where u =
v

|v|
, is given by

Duf(1, 1, 1) = ∇f(1, 1, 1) •u

First,

u =
v

|v|
=

〈1, 0, 1〉√
12 + 02 + 12

=
1√
2
〈1, 0, 1〉 .

Secondly, the gradient of f is given by:

∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈3x2,−2yz,−y2〉

=⇒ ∇f(1, 1, 1) = 〈3,−2,−1〉.

So, now

Duf(1, 1, 1) = ∇f(1, 1, 1) •u

= 〈3,−2,−1〉 • 1√
2
〈1, 0, 1〉

=
1√
2
〈3,−2,−1〉 • 〈1, 0, 1〉

=
1√
2

(3− 1)

=
√

2

At the point (1, 1, 1), the value of the function f is increasing at the rate of
√

2 as

we move in the direction given by the vector 〈1, 0, 1〉.

2. Find the tangent plane and the normal line to the surface x2 + y2 = 2z2 at the point
P = (1, 1, 1).
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Solution: The given surface is the zero level surface of the function F (x, y, z) =
x2 + y2 − 2z2. So, the normal vector to the tangent plane at the point P (1, 1, 1) is
given by ∇F (1, 1, 1). We have

∇F (x, y, z) = 〈2x, 2y,−4z〉 =⇒ ∇F (1, 1, 1) = 〈2, 2,−4〉.

Thus, the equation of the tangent plane at (1, 1, 1) is

2(x− 1) + 2(y − 1)− 4(z − 1) = 0 =⇒ x+ y − 2z = 0,

and the equation for the normal line at (1, 1, 1) is

〈x, y, z〉 = 〈1, 1, 1〉+ t〈2, 2,−4〉 = 〈1 + 2t, 1 + 2t, 1− 4t〉.

3. Write an equation of the tangent line to the curve of intersection between the two surfaces
defined by z = 2x2 + y2 and x2 + 3y2 + 2z2 = 22 at the point (1, 1, 3).

Hint: Think about the geometry of the gradient vectors. You don’t have to parametrize
the curve to do this problem.

Solution: The surface z = 2x2 + y2 can be written as the level surface F (x, y, z) =
2x2 + y2 − z = 0; and so the gradient of F is

∇F (x, y, z) = 〈4x, 2y,−1〉 .

Also, the gradient of the level surface G(x, y, z) = x2 + 3y2 + 2z2 = 22 is

∇G(x, y, z) = 〈2x, 6y, 4z〉 .

The tangent vector at (1, 1, 3) of the curve of intersection between these two surfaces
is perpendicular to both vectors ∇F (1, 1, 3) = 〈4, 2,−1〉 and ∇G(1, 1, 3) = 〈2, 6, 12〉.
And

∇F (1, 1, 3)×∇G(1, 1, 3) = 〈4, 2,−1〉 × 〈2, 6, 12〉 = 〈30,−50, 20〉 .

Thus, 〈30,−50, 20〉 is a parallel vector of the tangent line to the curve of intersection
at (1, 1, 3). Thus, an equation of the required tangent line is

〈x, y, z〉 = 〈1, 1, 3〉+ t 〈30,−50, 20〉 .

4. Find the local maximum and the local minimum value(s) and saddle point(s) of the
function z = 3x2 − 6xy + 2y3 + 1.
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Solution: First, let’s find all the critical points of z = 3x2 − 6xy + 2y3 + 1:{
zx(x, y) = 6x− 6y = 0 =⇒ y = x (1)

zy(x, y) = 6y2 − 6x = 0 (2)

With y = x, equation (2) becomes 6x2 − 6x = 0 =⇒ 6x(x − 1) = 0 =⇒ x =
0 or x = 1. Thus, all the critical points are (0, 0) and (1, 1).

Now, we will use the Second Derivative Test to test each critical point. We want to
compute

D(x, y) =

∣∣∣∣zxx zxy
zyx zyy

∣∣∣∣ = zxxzyy − z2xy = (6)(12y)− (−6)2 = 72y − 36.

And we have
D(0, 0) = −36 < 0 =⇒ (0, 0) is a saddle point.

D(1, 1) = 72− 36 = 36 > 0 and zxx(1, 1) = 6 > 0 =⇒ z(1, 1) is a local minimum.

In conclusion, the local minimum value of z is z(1, 1) = 3(1)2−6(1)(1)+2(1)3+1 = 0.
And (0, 0) is the saddle point of z, i.e. z(0, 0) is neither a local minimum nor local
maximum.

5. Identify the absolute maximum and absolute minimum values attained by g(x, y) =
x2y − x2 within the triangle T bounded by the points P (0, 0), Q(2, 0), and R(0, 4).

Solution: The picture for the triangle T :

First, we find all critical points in the interior of the triangle:
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{
gx(x, y) = 2xy − 2x = 0 (1)

gy(x, y) = x2 = 0 (2)

Equation (2) tells us that x must be zero. And when x = 0, equation (1) is true
automatically giving us the points (0, y) for 0 ≤ y ≤ 4 are the solutions of this
system of equations. So, all the critical points are exactly the boundary PR of the
triangle. So, we get no critical point inside the triangle. We move on to analyze the
boundaries.

On the boundary PR, we have x = 0 and 0 ≤ y ≤ 4. And, g(0, y) = 0.

On the boundary PQ, we have 0 ≤ x ≤ 2 and y = 0. And, g(x, 0) = −x2. The
graph of −x2 is a parabola concaves downward. So, g(x, 0) = −x2 with 0 ≤ x ≤ 2
attains a maximum value of 0 when x = 0 and a minimum value of −4 when x = 2.

On the boundary QR, we have y = −2x + 4 with 0 ≤ x ≤ 2. And, g(x,−2x + 4) =
x2(−2x+ 4)− x2 = −2x3 + 3x2, for 0 ≤ x ≤ 2. The critical numbers of −2x3 + 3x2

for 0 ≤ x ≤ 2 are x = 0 and x = 1. So, g has a local minimum of 0 at x = 0, y = 4
and a local maximum of 1 at x = 1, y = 2 on this boundary, and g(2, 0) = −4 is the
minimum on this boundary.

Here is a summary of the results:

(x, y) g(x, y)
(0, y) 0

(2, 0) −4

(1, 2) 1

So, we conclude that on the whole triangle (including boundaries), the function has
an absolute maximum of 1 at (1, 2) and an absolute minimum of −4 at (2, 0).

6. Identify the absolute maximum and absolute minimum values attained by z = xy + 1
on the region R = {(x, y) |x2 + y2 ≤ 1}.

Solution: First, we find the critical points in the interior of the region R. We have{
zx(x, y) = y = 0 =⇒ y = 0

zy(x, y) = x = 0 =⇒ x = 0

So, the only critical point inside R is (0, 0).
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Next, we want to find the extreme values of z on the boundary x2 + y2 = 1. One
way of doing this is to use the method of Lagrange Multipliers. In this language, we
want to find the extrema of z = xy+1 subject to the constraint g(x, y) = x2+y2 = 1.
We have ∇z = λ∇g for some constant λ. So, we get the system of equations:

y = λ · 2x (1)

x = λ · 2y (2)

x2 + y2 = 1 (3)

Plug equation (2) into equation (1), we get y = 4λ2y ⇔ (2λ+ 1)(2λ− 1)y = 0 =⇒
y = 0 or λ = 1

2
or λ = −1

2
.

• If y = 0, then from equation (2) we get x = 0. But (x, y) = (0, 0) contradicts
equation (3). Thus, y cannot be zero, and we must have λ = 1

2
or λ = −1

2
.

• If λ = 1
2
, then from equation (1) or (2) we get x = y. With x = y, equation (3)

gives x = y = ±
√
2
2

. So, the points of interest are (
√
2
2
,
√
2
2

) and (−
√
2
2
,−
√
2
2

).

• If λ = −1
2
, then from equation (1) or (2) we get x = −y. With x = −y,

equation (3) gives x = −y = ±
√
2
2

. So, the points of interest are (
√
2
2
,−
√
2
2

) and

(−
√
2
2
,
√
2
2

).

Finally, let’s compute the values of z at all the points we found:

(x, y) z = xy + 1
(0, 0) 1

(
√
2
2
,
√
2
2

) 3
2

(−
√
2
2
,−
√
2
2

) 3
2

(
√
2
2
,−
√
2
2

) 1
2

(−
√
2
2
,
√
2
2

) 1
2

In conclusion, the absolute maximum value of z is 3
2

and it occurs at the points

(
√
2
2
,
√
2
2

) and (−
√
2
2
,−
√
2
2

). The absolute minimum value of z is 1
2

and it occurs at

the points (
√
2
2
,−
√
2
2

) and (−
√
2
2
,
√
2
2

).

7. Find the absolute maximum of f(x, y, z) = xyz subject to the constraint
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x2 + y2 + 2z2 = 9, assuming that x, y, and z are nonnegative.

Solution: The gradient of f is

∇f = 〈yz, xz, xy〉 .

Let g = x2 + y2 + 2z2, then ∇g = 〈2x, 2y, 4z〉. The system of equations we get by
Lagrange multipliers is thus

yz = 2λx 1 =⇒ xyz = 2λx2

xz = 2λy 2 =⇒ xyz = 2λy2

xy = 4λz 3 =⇒ xyz = 4λz2

x2 + y2 + 2z2 = 9 4

Combining the first two new equations we get 2λx2 = 2λy2 =⇒ 2λ (x2 − y2) = 0.
So, either λ = 0 or x2 = y2.

Case 1: λ = 0. Then equation 1 gives either y = 0 or z = 0. And we note that if
either x, y, or z is zero, then f will be 0. So, we can move one from here and find
other points and if 0 is the biggest value of f comparing to other points then 0 is an
absolute maximum.

Case 2: x2 = y2

Similarly, combining the new second and third equations, we get 2λy2 = 4λz2 =⇒
2λ (y2 − 2z2) = 0 =⇒ y2 = 2z2 (we already considered the case when λ = 0).

So, we have in this case x2 = y2 and y2 = 2z2 =⇒ x2 = 2z2. Putting y2 = 2z2 and

x2 = 2z2 into equation 4 , we get 2z2 + 2z2 + 2z2 = 9 =⇒ z =
√

3
2

or z = −
√

3
2
.

According to the problem, we only consider the case where x, y, z are nonnegative.

With z =
√

3
2
, x2 = 2z2 =⇒ x2 = 3 =⇒ x =

√
3 (x ≥ 0).

And y2 = 2z2 =⇒ y =
√

3 (y ≥ 0). So, we get the point

(
√

3,
√

3,

√
3

2

)
.

We have f

(
√

3,
√

3,

√
3

2

)
=

3
√

6

2
(which is bigger than 0 in case 1). Thus, the

absolute maximum of f is
3
√

6

2
.
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Optional/Review Problems:

8. (Chain Rule) If h = x2 + y2 + z2 and y cos z + z cosx = 0, find
∂h

∂x
assuming that x and

y are the independent variables.

Solution: By definition we are finding how h changes when we vary x, but hold y
constant and hold y cos z + z cosx constant.

We have h = h
(
x, y, z(x, y)

)
. So,

∂h

∂x
= 2x+ 2z

∂z

∂x
since z is a function of x.

To find
∂z

∂x
, we use implicit differentiation:

y cos z + z cosx = 0

∂

∂x

[
y cos z + z cosx

]
=

∂

∂x

[
0
]

−y sin z
∂z

∂x
+
∂z

∂x
cosx− z sinx = 0

∂z

∂x
(cosx− y sin z) = z sinx

∂z

∂x
=

z sinx

cosx− y sin z

Therefore,
∂h

∂x
= 2x+ 2z

(
z sinx

cosx− y sin z

)
=⇒ ∂h

∂x
= 2x+

2z2 sinx

cosx− y sin z
.

9. (Chain Rule) If h = x2 + y2 + z2 and y cos z + z cosx = 0, find
∂h

∂x
assuming that x and

z are the independent variables.

Solution: We are finding how h changes when we vary x, but hold z constant and
hold y cos z + z cosx constant.

We have h = h
(
x, y(x, z), z

)
. So,

∂h

∂x
= 2x+ 2y

∂y

∂x
since y is a function of x.
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To find
∂y

∂x
, use implicit differentiation:

y cos z + z cosx = 0

∂

∂x

[
y cos z + z cosx

]
=

∂

∂x

[
0
]

∂y

∂x
cos z − z sin(x) = 0

∂y

∂x
= z

sin(x)

cos(z)

Therefore,
∂h

∂x
= 2x+ 2yz

sin(x)

cos(z)

The purpose of the last two questions was to get you to think about why the two ∂z/∂x
are not the same. It is helpful to draw a picture with differentials to illustrate this. Talk
to me in office hours/some other time if you have any questions.

10. (Chain Rule) Find
dz

dt
when t = 2, where z = x2 + y2 − 2xy, x = ln(t− 1) and y = e−t.

Solution: We have z = z
(
x(t), y(t)

)
. So, by the chain rule, we obtain

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= (2x− 2y)

(
1

t− 1

)
+ (2y − 2x)e−t(−1)

=
(
2 ln(t− 1)− 2e−t

)( 1

t− 1

)
−
(
2e−t − 2 ln(t− 1)

)
e−t.

Hence,

dz

dt

∣∣∣∣
t=2

=
(
2 ln(2− 1)− 2e−2

)( 1

2− 1

)
−
(
2e−2 − 2 ln(2− 1)

)
e−2

= (0− 2e−2) · 1− (2e−2 − 0)e−2

= −2e−2 − 2e−4.

11. (Chain Rule) Let r = r(x, y), x = x(s, t), and y = y(t). Find
∂r

∂t
at (s, t) = (1, 0), given
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x(1, 0) = 2, xs(1, 0) = −1, xt(1, 0) = 7,
y(0) = 3, y(1) = 0 y′(0) = 4,
r(2, 3) = −1, rx(2, 3) = 3, ry(2, 3) = 5,
rx(1, 0) = 6, ry(1, 0) = −2,

Solution: We have r =
(
x(s, t), y(t)

)
. So, from the chain rule, we get

∂r

∂t
=
∂r

∂x

∂x

∂t
+
∂r

∂y

dy

dt

= rxxt + ryy
′

= rx(x, y)xt(s, t) + ry(x, y)y′(t).

When s = 1 and t = 0, we have x = x(1, 0) = 2 and y = y(0) = 3. So,

∂r

∂t

∣∣∣∣
s=1, t=0

= rx(2, 3)xt(1, 0) + ry(2, 3)y′(0)

= (3)(7) + (5)(4)

= 41.

12. (Chain Rule) A cylinder containing an incompressible fluid is being squeezed from both
ends. If the length of the cylinder is decreasing at a rate of 3m/s, calculate the rate at
which the radius is changing when the radius is 2m and the length is 1m. (Note: An
incompressible fluid is a fluid whose volume does not change.)

Solution: Let V be the volume of the cylinder, r be the radius of the cylinder, and
l be its length. Then, V = πr2l. So, V = V

(
r(t), l(t)

)
.

By assumptions, we have
dl

dt
= −3 and incompressibility of the fluid implies

dV

dt
= 0.

We want to find
dr

dt
at the instant when r = 2 and l = 1. We have

dV

dt
=

d

dt

[
πr2l

]
0 = 2πrl

dr

dt
+ πr2

dl

dt
. And we know

dl

dt
= −3; so

0 = 2πrl
dr

dt
− 3πr2

dr

dt
=

3r

2l
.
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Hence, when r = 2, l = 1, we get
dr

dt
=

3 · 2
2 · 1

= 3m/s.

13. (Gradient) Find all the critical points of f(x, y) = y3 + 3x2y − 6x2 − 6y2 + 2.

Solution: We want to find all points such that fx(x, y) = 0 and fy(x, y) = 0. We
have {

fx(x, y) = 6xy − 12x = 0 (1)

fy(x, y) = 3y2 + 3x2 − 12y = 0 (2)

Equation (1) implies 6x(y − 2) = 0 =⇒ x = 0 or y = 2.

• When x = 0, equation (2) is equivalent to 3y2 − 12y = 0 =⇒ 3y(y − 4) =
0 =⇒ y = 0 or y = 4. So, we get the points (0, 0) and (0, 4).

• When y = 2, equation (2) is equivalent to 12 + 3x2 − 24 = 0 =⇒ x2 = 4 =⇒
x = −2 or x = 2. So, we get the points (−2, 2) and (2, 2) here.

Thus, all the critical points of f are (0, 0), (0, 4), (−2, 2), (2, 2).

14. (Gradient) Find all points at which the direction of fastest change of the function
f(x, y) = x2 + y2 − 2x− 4y is i + j.

Solution: We know the direction of fastest change of f at a point (x, y) is given by
the direction of ∇f(x, y) = 〈2x− 2, 2y− 4〉. So, we want to find all pairs (x, y) such
that 〈2x−2, 2y−4〉 = k〈1, 1〉 for any constant k. We obtain the system of equations{

2x− 2 = k

2y − 4 = k

Then, 2x−2 = 2y−4 =⇒ y = x+1. Thus, all the wanted pairs (x, y) are (x, x+1),
where x admits any value in the domain. This is exactly all the points on the line
y = x+ 1 in the domain of f .


