M20550 Calculus III Tutorial Worksheet 5

1. Let $f(x, y, z)=x^{3}-y^{2} z$. If $\mathbf{v}=\langle 1,0,1\rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point $(1,1,1)$. At what rate is f changing at the given point as we move in the direction of \mathbf{v} ? Is f increasing or decreasing in this instance?

Solution: The directional derivative of f in the direction of \mathbf{v} at the point $(1,1,1)$, denote $D_{\mathbf{u}} f(1,1,1)$ where $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$, is given by

$$
D_{\mathbf{u}} f(1,1,1)=\nabla f(1,1,1) \cdot \mathbf{u}
$$

First,

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 1,0,1\rangle}{\sqrt{1^{2}+0^{2}+1^{2}}}=\frac{1}{\sqrt{2}}\langle 1,0,1\rangle .
$$

Secondly, the gradient of f is given by:

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& =\left\langle 3 x^{2},-2 y z,-y^{2}\right\rangle \\
\Longrightarrow \nabla f(1,1,1) & =\langle 3,-2,-1\rangle
\end{aligned}
$$

So, now

$$
\begin{aligned}
D_{\mathbf{u}} f(1,1,1) & =\nabla f(1,1,1) \cdot \mathbf{u} \\
& =\langle 3,-2,-1\rangle \cdot \frac{1}{\sqrt{2}}\langle 1,0,1\rangle \\
& =\frac{1}{\sqrt{2}}\langle 3,-2,-1\rangle \cdot\langle 1,0,1\rangle \\
& =\frac{1}{\sqrt{2}}(3-1) \\
& =\sqrt{2}
\end{aligned}
$$

At the point $\underline{(1,1,1)}$, the value of the function f is increasing at the rate of $\underline{\sqrt{2}}$ as we move in the direction given by the vector $\langle 1,0,1\rangle$.
2. Find the tangent plane and the normal line to the surface $x^{2}+y^{2}=2 z^{2}$ at the point $P=(1,1,1)$.

Solution: The given surface is the zero level surface of the function $F(x, y, z)=$ $x^{2}+y^{2}-2 z^{2}$. So, the normal vector to the tangent plane at the point $P(1,1,1)$ is given by $\nabla F(1,1,1)$. We have

$$
\nabla F(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \Longrightarrow \nabla F(1,1,1)=\langle 2,2,-4\rangle .
$$

Thus, the equation of the tangent plane at $(1,1,1)$ is

$$
2(x-1)+2(y-1)-4(z-1)=0 \Longrightarrow x+y-2 z=0
$$

and the equation for the normal line at $(1,1,1)$ is

$$
\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle 2,2,-4\rangle=\langle 1+2 t, 1+2 t, 1-4 t\rangle .
$$

3. Write an equation of the tangent line to the curve of intersection between the two surfaces defined by $z=2 x^{2}+y^{2}$ and $x^{2}+3 y^{2}+2 z^{2}=22$ at the point $(1,1,3)$.
Hint: Think about the geometry of the gradient vectors. You don't have to parametrize the curve to do this problem.

Solution: The surface $z=2 x^{2}+y^{2}$ can be written as the level surface $F(x, y, z)=$ $2 x^{2}+y^{2}-z=0$; and so the gradient of F is

$$
\nabla F(x, y, z)=\langle 4 x, 2 y,-1\rangle .
$$

Also, the gradient of the level surface $G(x, y, z)=x^{2}+3 y^{2}+2 z^{2}=22$ is

$$
\nabla G(x, y, z)=\langle 2 x, 6 y, 4 z\rangle
$$

The tangent vector at $(1,1,3)$ of the curve of intersection between these two surfaces is perpendicular to both vectors $\nabla F(1,1,3)=\langle 4,2,-1\rangle$ and $\nabla G(1,1,3)=\langle 2,6,12\rangle$. And

$$
\nabla F(1,1,3) \times \nabla G(1,1,3)=\langle 4,2,-1\rangle \times\langle 2,6,12\rangle=\langle 30,-50,20\rangle
$$

Thus, $\langle 30,-50,20\rangle$ is a parallel vector of the tangent line to the curve of intersection at $(1,1,3)$. Thus, an equation of the required tangent line is

$$
\langle x, y, z\rangle=\langle 1,1,3\rangle+t\langle 30,-50,20\rangle .
$$

4. Find the local maximum and the local minimum value(s) and saddle point(s) of the function $z=3 x^{2}-6 x y+2 y^{3}+1$.

Solution: First, let's find all the critical points of $z=3 x^{2}-6 x y+2 y^{3}+1$:

$$
\left\{\begin{array}{l}
z_{x}(x, y)=6 x-6 y=0 \Longrightarrow y=x \tag{1}\\
z_{y}(x, y)=6 y^{2}-6 x=0
\end{array}\right.
$$

With $y=x$, equation (2) becomes $6 x^{2}-6 x=0 \Longrightarrow 6 x(x-1)=0 \Longrightarrow x=$ 0 or $x=1$. Thus, all the critical points are $(0,0)$ and $(1,1)$.
Now, we will use the Second Derivative Test to test each critical point. We want to compute

$$
D(x, y)=\left|\begin{array}{ll}
z_{x x} & z_{x y} \\
z_{y x} & z_{y y}
\end{array}\right|=z_{x x} z_{y y}-z_{x y}^{2}=(6)(12 y)-(-6)^{2}=72 y-36
$$

And we have

$$
D(0,0)=-36<0 \Longrightarrow(0,0) \text { is a saddle point. }
$$

$D(1,1)=72-36=36>0$ and $z_{x x}(1,1)=6>0 \Longrightarrow z(1,1)$ is a local minimum.
In conclusion, the local minimum value of z is $z(1,1)=3(1)^{2}-6(1)(1)+2(1)^{3}+1=0$. And $(0,0)$ is the saddle point of z, i.e. $z(0,0)$ is neither a local minimum nor local maximum.
5. Identify the absolute maximum and absolute minimum values attained by $g(x, y)=$ $x^{2} y-x^{2}$ within the triangle T bounded by the points $P(0,0), Q(2,0)$, and $R(0,4)$.

Solution: The picture for the triangle T :

First, we find all critical points in the interior of the triangle:

$$
\left\{\begin{array}{l}
g_{x}(x, y)=2 x y-2 x=0 \tag{1}\\
g_{y}(x, y)=x^{2}=0
\end{array}\right.
$$

Equation (2) tells us that x must be zero. And when $x=0$, equation (1) is true automatically giving us the points $(0, y)$ for $0 \leq y \leq 4$ are the solutions of this system of equations. So, all the critical points are exactly the boundary $P R$ of the triangle. So, we get no critical point inside the triangle. We move on to analyze the boundaries.
On the boundary $P R$, we have $x=0$ and $0 \leq y \leq 4$. And, $g(0, y)=0$.
On the boundary $P Q$, we have $0 \leq x \leq 2$ and $y=0$. And, $g(x, 0)=-x^{2}$. The graph of $-x^{2}$ is a parabola concaves downward. So, $g(x, 0)=-x^{2}$ with $0 \leq x \leq 2$ attains a maximum value of 0 when $x=0$ and a minimum value of -4 when $x=2$.
On the boundary $Q R$, we have $y=-2 x+4$ with $0 \leq x \leq 2$. And, $g(x,-2 x+4)=$ $x^{2}(-2 x+4)-x^{2}=-2 x^{3}+3 x^{2}$, for $0 \leq x \leq 2$. The critical numbers of $-2 x^{3}+3 x^{2}$ for $0 \leq x \leq 2$ are $x=0$ and $x=1$. So, g has a local minimum of 0 at $x=0, y=4$ and a local maximum of 1 at $x=1, y=2$ on this boundary, and $g(2,0)=-4$ is the minimum on this boundary.

Here is a summary of the results:

(x, y)	$g(x, y)$
$(0, y)$	0
$(2,0)$	-4
$(1,2)$	1

So, we conclude that on the whole triangle (including boundaries), the function has an absolute maximum of 1 at $(1,2)$ and an absolute minimum of -4 at $(2,0)$.
6. Identify the absolute maximum and absolute minimum values attained by $z=x y+1$ on the region $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Solution: First, we find the critical points in the interior of the region R. We have

$$
\left\{\begin{array}{l}
z_{x}(x, y)=y=0 \quad \Longrightarrow y=0 \\
z_{y}(x, y)=x=0 \quad \Longrightarrow x=0
\end{array}\right.
$$

So, the only critical point inside R is $(0,0)$.

Next, we want to find the extreme values of z on the boundary $x^{2}+y^{2}=1$. One way of doing this is to use the method of Lagrange Multipliers. In this language, we want to find the extrema of $z=x y+1$ subject to the constraint $g(x, y)=x^{2}+y^{2}=1$. We have $\nabla z=\lambda \nabla g$ for some constant λ. So, we get the system of equations:

$$
\left\{\begin{array}{l}
y=\lambda \cdot 2 x \tag{1}\\
x=\lambda \cdot 2 y \\
x^{2}+y^{2}=1
\end{array}\right.
$$

Plug equation (2) into equation (1), we get $y=4 \lambda^{2} y \Leftrightarrow(2 \lambda+1)(2 \lambda-1) y=0 \Longrightarrow$ $y=0$ or $\lambda=\frac{1}{2}$ or $\lambda=-\frac{1}{2}$.

- If $y=0$, then from equation (2) we get $x=0$. But $(x, y)=(0,0)$ contradicts equation (3). Thus, y cannot be zero, and we must have $\lambda=\frac{1}{2}$ or $\lambda=-\frac{1}{2}$.
- If $\lambda=\frac{1}{2}$, then from equation (1) or (2) we get $x=y$. With $x=y$, equation (3) gives $x=y= \pm \frac{\sqrt{2}}{2}$. So, the points of interest are $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.
- If $\lambda=-\frac{1}{2}$, then from equation (1) or (2) we get $x=-y$. With $x=-y$, equation (3) gives $x=-y= \pm \frac{\sqrt{2}}{2}$. So, the points of interest are $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Finally, let's compute the values of z at all the points we found:

(x, y)	$z=x y+1$
$(0,0)$	1
$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	$\frac{3}{2}$
$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$	$\frac{3}{2}$
$\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$	$\frac{1}{2}$
$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	$\frac{1}{2}$

In conclusion, the absolute maximum value of z is $\frac{3}{2}$ and it occurs at the points $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$. The absolute minimum value of z is $\frac{1}{2}$ and it occurs at the points $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
7. Find the absolute maximum of $f(x, y, z)=x y z$ subject to the constraint
$x^{2}+y^{2}+2 z^{2}=9$, assuming that x, y, and z are nonnegative.

Solution: The gradient of f is

$$
\nabla f=\langle y z, x z, x y\rangle
$$

Let $g=x^{2}+y^{2}+2 z^{2}$, then $\nabla g=\langle 2 x, 2 y, 4 z\rangle$. The system of equations we get by Lagrange multipliers is thus

$$
\left\{\begin{aligned}
y z & =2 \lambda x \\
x z & =2 \lambda y \\
x y & =4 \lambda z \\
x^{2}+y^{2}+2 z^{2} & =9
\end{aligned}\right.
$$

Combining the first two new equations we get $2 \lambda x^{2}=2 \lambda y^{2} \Longrightarrow 2 \lambda\left(x^{2}-y^{2}\right)=0$. So, either $\lambda=0$ or $x^{2}=y^{2}$.
Case 1: $\lambda=0$. Then equation (1) gives either $y=0$ or $z=0$. And we note that if either x, y, or z is zero, then f will be 0 . So, we can move one from here and find other points and if 0 is the biggest value of f comparing to other points then 0 is an absolute maximum.

Case 2: $x^{2}=y^{2}$
Similarly, combining the new second and third equations, we get $2 \lambda y^{2}=4 \lambda z^{2} \Longrightarrow$ $2 \lambda\left(y^{2}-2 z^{2}\right)=0 \Longrightarrow y^{2}=2 z^{2}$ (we already considered the case when $\lambda=0$).
So, we have in this case $x^{2}=y^{2}$ and $y^{2}=2 z^{2} \Longrightarrow x^{2}=2 z^{2}$. Putting $y^{2}=2 z^{2}$ and $x^{2}=2 z^{2}$ into equation (4), we get $2 z^{2}+2 z^{2}+2 z^{2}=9 \Longrightarrow z=\sqrt{\frac{3}{2}}$ or $z=-\sqrt{\frac{3}{2}}$. According to the problem, we only consider the case where x, y, z are nonnegative.
With $z=\sqrt{\frac{3}{2}}, x^{2}=2 z^{2} \Longrightarrow x^{2}=3 \Longrightarrow x=\sqrt{3}(x \geq 0)$.
And $y^{2}=2 z^{2} \Longrightarrow y=\sqrt{3}(y \geq 0)$. So, we get the point $\left(\sqrt{3}, \sqrt{3}, \sqrt{\frac{3}{2}}\right)$.
We have $f\left(\sqrt{3}, \sqrt{3}, \sqrt{\frac{3}{2}}\right)=\frac{3 \sqrt{6}}{2}$ (which is bigger than 0 in case 1). Thus, the absolute maximum of f is $\frac{3 \sqrt{6}}{2}$.

Optional/Review Problems:

8. (Chain Rule) If $h=x^{2}+y^{2}+z^{2}$ and $y \cos z+z \cos x=0$, find $\frac{\partial h}{\partial x}$ assuming that x and y are the independent variables.

Solution: By definition we are finding how h changes when we vary x, but hold y constant and hold $y \cos z+z \cos x$ constant.
We have $h=h(x, y, z(x, y))$. So,

$$
\frac{\partial h}{\partial x}=2 x+2 z \frac{\partial z}{\partial x} \quad \text { since } z \text { is a function of } x .
$$

To find $\frac{\partial z}{\partial x}$, we use implicit differentiation:

$$
\begin{aligned}
y \cos z+z \cos x & =0 \\
\frac{\partial}{\partial x}[y \cos z+z \cos x] & =\frac{\partial}{\partial x}[0] \\
-y \sin z \frac{\partial z}{\partial x}+\frac{\partial z}{\partial x} \cos x-z \sin x & =0 \\
\frac{\partial z}{\partial x}(\cos x-y \sin z) & =z \sin x \\
\frac{\partial z}{\partial x} & =\frac{z \sin x}{\cos x-y \sin z}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{\partial h}{\partial x}=2 x+2 z\left(\frac{z \sin x}{\cos x-y \sin z}\right) \\
\Longrightarrow \frac{\partial h}{\partial x}=2 x+\frac{2 z^{2} \sin x}{\cos x-y \sin z} .
\end{gathered}
$$

9. (Chain Rule) If $h=x^{2}+y^{2}+z^{2}$ and $y \cos z+z \cos x=0$, find $\frac{\partial h}{\partial x}$ assuming that x and z are the independent variables.

Solution: We are finding how h changes when we vary x, but hold z constant and hold $y \cos z+z \cos x$ constant.
We have $h=h(x, y(x, z), z)$. So,

$$
\frac{\partial h}{\partial x}=2 x+2 y \frac{\partial y}{\partial x} \quad \text { since } y \text { is a function of } x
$$

To find $\frac{\partial y}{\partial x}$, use implicit differentiation:

$$
\begin{gathered}
y \cos z+z \cos x=0 \\
\frac{\partial}{\partial x}[y \cos z+z \cos x]=\frac{\partial}{\partial x}[0] \\
\frac{\partial y}{\partial x} \cos z-z \sin (x)=0 \\
\frac{\partial y}{\partial x}=z \frac{\sin (x)}{\cos (z)}
\end{gathered}
$$

Therefore,

$$
\frac{\partial h}{\partial x}=2 x+2 y z \frac{\sin (x)}{\cos (z)}
$$

The purpose of the last two questions was to get you to think about why the two $\partial z / \partial x$ are not the same. It is helpful to draw a picture with differentials to illustrate this. Talk to me in office hours/some other time if you have any questions.
10. (Chain Rule) Find $\frac{d z}{d t}$ when $t=2$, where $z=x^{2}+y^{2}-2 x y, x=\ln (t-1)$ and $y=e^{-t}$.

Solution: We have $z=z(x(t), y(t))$. So, by the chain rule, we obtain

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x-2 y)\left(\frac{1}{t-1}\right)+(2 y-2 x) e^{-t}(-1) \\
& =\left(2 \ln (t-1)-2 e^{-t}\right)\left(\frac{1}{t-1}\right)-\left(2 e^{-t}-2 \ln (t-1)\right) e^{-t}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left.\frac{d z}{d t}\right|_{t=2} & =\left(2 \ln (2-1)-2 e^{-2}\right)\left(\frac{1}{2-1}\right)-\left(2 e^{-2}-2 \ln (2-1)\right) e^{-2} \\
& =\left(0-2 e^{-2}\right) \cdot 1-\left(2 e^{-2}-0\right) e^{-2} \\
& =-2 e^{-2}-2 e^{-4} .
\end{aligned}
$$

11. (Chain Rule) Let $r=r(x, y), x=x(s, t)$, and $y=y(t)$. Find $\frac{\partial r}{\partial t}$ at $(s, t)=(1,0)$, given

$$
\begin{array}{lll}
x(1,0)=2, & x_{s}(1,0)=-1, & x_{t}(1,0)=7 \\
y(0)=3, & y(1)=0 & y^{\prime}(0)=4 \\
r(2,3)=-1, & r_{x}(2,3)=3, & r_{y}(2,3)=5 \\
r_{x}(1,0)=6, & r_{y}(1,0)=-2, &
\end{array}
$$

Solution: We have $r=(x(s, t), y(t))$. So, from the chain rule, we get

$$
\begin{aligned}
\frac{\partial r}{\partial t} & =\frac{\partial r}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial r}{\partial y} \frac{d y}{d t} \\
& =r_{x} x_{t}+r_{y} y^{\prime} \\
& =r_{x}(x, y) x_{t}(s, t)+r_{y}(x, y) y^{\prime}(t)
\end{aligned}
$$

When $s=1$ and $t=0$, we have $x=x(1,0)=2$ and $y=y(0)=3$. So,

$$
\begin{aligned}
\left.\frac{\partial r}{\partial t}\right|_{s=1, t=0} & =r_{x}(2,3) x_{t}(1,0)+r_{y}(2,3) y^{\prime}(0) \\
& =(3)(7)+(5)(4) \\
& =41
\end{aligned}
$$

12. (Chain Rule) A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)

Solution: Let V be the volume of the cylinder, r be the radius of the cylinder, and l be its length. Then, $V=\pi r^{2} l$. So, $V=V(r(t), l(t))$.
By assumptions, we have $\frac{d l}{d t}=-3$ and incompressibility of the fluid implies $\frac{d V}{d t}=0$.
We want to find $\frac{d r}{d t}$ at the instant when $r=2$ and $l=1$. We have

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left[\pi r^{2} l\right] \\
0 & =2 \pi r l \frac{d r}{d t}+\pi r^{2} \frac{d l}{d t} . \quad \text { And we know } \frac{d l}{d t}=-3 ; \text { so } \\
0 & =2 \pi r l \frac{d r}{d t}-3 \pi r^{2} \\
\frac{d r}{d t} & =\frac{3 r}{2 l} .
\end{aligned}
$$

Hence, when $r=2, l=1$, we get $\frac{d r}{d t}=\frac{3 \cdot 2}{2 \cdot 1}=3 \mathrm{~m} / \mathrm{s}$.
13. (Gradient) Find all the critical points of $f(x, y)=y^{3}+3 x^{2} y-6 x^{2}-6 y^{2}+2$.

Solution: We want to find all points such that $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$. We have

$$
\left\{\begin{array}{l}
f_{x}(x, y)=6 x y-12 x=0 \tag{1}\\
f_{y}(x, y)=3 y^{2}+3 x^{2}-12 y=0
\end{array}\right.
$$

Equation (1) implies $6 x(y-2)=0 \Longrightarrow x=0$ or $y=2$.

- When $x=0$, equation (2) is equivalent to $3 y^{2}-12 y=0 \Longrightarrow 3 y(y-4)=$ $0 \Longrightarrow y=0$ or $y=4$. So, we get the points $(0,0)$ and $(0,4)$.
- When $y=2$, equation (2) is equivalent to $12+3 x^{2}-24=0 \Longrightarrow x^{2}=4 \Longrightarrow$ $x=-2$ or $x=2$. So, we get the points $(-2,2)$ and $(2,2)$ here.

Thus, all the critical points of f are $(0,0),(0,4),(-2,2),(2,2)$.
14. (Gradient) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.

Solution: We know the direction of fastest change of f at a point (x, y) is given by the direction of $\nabla f(x, y)=\langle 2 x-2,2 y-4\rangle$. So, we want to find all pairs (x, y) such that $\langle 2 x-2,2 y-4\rangle=k\langle 1,1\rangle$ for any constant k. We obtain the system of equations

$$
\left\{\begin{array}{l}
2 x-2=k \\
2 y-4=k
\end{array}\right.
$$

Then, $2 x-2=2 y-4 \Longrightarrow y=x+1$. Thus, all the wanted pairs (x, y) are $(x, x+1)$, where x admits any value in the domain. This is exactly all the points on the line $y=x+1$ in the domain of f.

