## M20550 Calculus III Tutorial Worksheet 6

1. Evaluate the double integral $\iint_{R}(1-x) d A$, for $R=[0,1] \times[0,1]$, by identifying it as the volume of a solid.
2. Evaluate the iterated integral.
(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2} \theta d \theta d r$
(b) $\iint_{R} y e^{-x y} d A$ on $R=[0,2] \times[0,3]$
3. Use polar coordinates to show that

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi
$$

and deduce that $\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
4. Evaluate the given integral.

$$
\iint_{R} \arctan \left(\frac{y}{x}\right) d A
$$

where $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$.
5. Find the volume of the solid enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$.
6. Set up, but do not evaluate, the integral that gives the volume of the solid region bounded by the paraboloid $z=x^{2}+y^{2}$ and the cone $z=1-\sqrt{x^{2}+y^{2}}$.
7. $(1+1=2)$ Prove the integration by parts formula

$$
\int_{0}^{a} f(x) g(x) d x=f(a) \int_{0}^{a} g(y) d y-\int_{x=0}^{a} \frac{d f}{d x} \int_{y=0}^{x} g(y) d y d x
$$

by changing the order of integration and using the fundamental theorem of calculus.
8. (Optional) Find the maximum value of the function $f(x, y, z)=x+y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=1$.
9. (Optional) The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on the ellipse that are nearest and farthest from the origin.

