M20550 Calculus III Tutorial Worksheet 6

1. Evaluate the double integral $\iint_{R}(1-x) d A$, for $R=[0,1] \times[0,1]$, by identifying it as the volume of a solid.

Solution: This integral is the volume of a solid whose base is $R=[0,1] \times[0,1]$ and whose height at any given $(x, y) \in[0,1] \times[0,1]$ is $(1-x)$. This solid is a triangular prism on its side. The volume is

$$
(\text { area of the triangle } \times \text { length of the prism })=(0.5) \times 1=0.5
$$

So

$$
\iint_{R}(1-x) d A=0.5
$$

2. Evaluate the iterated integral.
(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2} \theta d \theta d r$

Solution: Since the region of integration is rectangular and the function is separable in θ and r, we can split it as a product of two integrals

$$
\int_{0}^{2} r d r \cdot \int_{0}^{\pi} \sin ^{2} \theta d \theta=2 \cdot \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \theta) d \theta=\pi
$$

(b) $\iint_{R} y e^{-x y} d A$ on $R=[0,2] \times[0,3]$

Solution: Notice that the region is rectangular, so the order of integration doesn't matter. However, we cannot separate this as a product of two integrals, since x and y are mixed variables in the function (we can't write it as a product of two functions $f(x)$ times $g(y))$.
We could try to integrate with respect to y first, but that would require integration by parts. It turns out it is easier to start with x instead:

$$
\int_{0}^{3} \int_{0}^{2} y e^{-x y} d x d y=\int_{0}^{3}\left[-e^{-x y}\right]_{x=0}^{x=2} d y=\int_{0}^{3}\left(-e^{-2 y}+1\right) d y=\frac{1}{2} e^{-6}+\frac{5}{2}
$$

3. Use polar coordinates to show that

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi
$$

and deduce that $\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

Solution: We convert to polar coordinates, remembering that $d x d y$ becomes $r d r d \theta$. For the bounds, notice the original integral covers the entire plane. Thus we have

$$
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

which now allows us to use u-substitution (which was impossible in the original integral). We take $u=r^{2}$, so that $d u=2 r d r$. At the same time we may compute the integral over theta (which is 2π), so we have

$$
\pi \int_{0}^{\infty} e^{-u} d u=\pi
$$

Now, since the original integrand is a separable function of x and y, i.e. it may be written as a product $e^{-x^{2}} e^{-y^{2}}$, and the region of integration is rectangular, our integrals are independent and we may write the original question as

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x \cdot \int_{-\infty}^{+\infty} e^{-y^{2}} d y
$$

If we think of y as a dummy variable, we notice that this is the integral we are trying to show equal to $\sqrt{\pi}$, times itself. This proves the desired result, since we have

$$
\left(\int_{-\infty}^{+\infty} e^{-x^{2}} d x\right)^{2}=\pi
$$

so

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

4. Evaluate the given integral.

$$
\iint_{R} \arctan \left(\frac{y}{x}\right) d A
$$

where $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$.

Solution:

Given the geometry of region R, it's beat to compute the double integral using polar coordinates,

In polar, we know $d A=r d r d \theta$ and
$\arctan \left(\frac{y}{x}\right)=\arctan (\tan \theta)=\theta \quad\left(\right.$ for $\left.-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$.
From the picture of the region R, we have $1 \leq r \leq 2$. To find the upper bound for θ, we need to find θ in (I) quad. Ouch that $y=x$. With $y=x$, we have $r \sin \theta=r \cos \theta \Rightarrow \sin \theta=\cos \theta \Rightarrow \theta=\frac{\pi}{4}$ for θ in (I)quad. So, $0 \leq \theta \leq \frac{\pi}{4}$,
$\iint_{R}^{T h u s} \arctan \left(\frac{y}{x}\right) d A=\int_{0}^{\pi / 4} \int_{1}^{2} \theta r d r d \theta=\left.\int_{0}^{\pi / 4} \frac{1}{2} r^{2} \theta\right|_{r=1} ^{r=2} d \theta=\int_{0}^{\pi / 4} \frac{3}{2} \theta d \theta=\left.\frac{3}{2} \cdot \frac{1}{2} \theta^{2}\right|_{0} ^{\pi / 4}=\frac{3}{64} \pi^{2}$
5. Find the volume of the solid enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$.

Solution: Over any point (r, θ) inside the unit circle, there is $1-\left(x^{2}+y^{2}\right)=1-r^{2}$ of a volume over it. Hence the total volume is

$$
\begin{gathered}
\int_{\text {inside the unit circle }}\left(1-r^{2}\right) d A=\int_{r=0}^{1} \int_{\theta=0}^{2 \pi}\left(1-r^{2}\right)(r d \theta d r)= \\
\left.2 \pi \int_{r=0}^{1}\left(r-r^{3}\right)=2 \pi\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right) \right\rvert\,=2 \pi * \frac{1}{4}=\pi / 2
\end{gathered}
$$

6. Set up, but do not evaluate, the integral that gives the volume of the solid region bounded by the paraboloid $z=x^{2}+y^{2}$ and the cone $z=1-\sqrt{x^{2}+y^{2}}$.

Solution: The region of integration will be the interior of the projection of the curve of intersection of $z=x^{2}+y^{2}$ with $z=1-\sqrt{x^{2}+y^{2}}$. Setting the two equal to each other, we have

$$
x^{2}+y^{2}=1-\sqrt{x^{2}+y^{2}}
$$

and due to the appearence of sums of x^{2} and y^{2}, we choose to convert to polar coordinates. This choice is reinforced by the rotational symmetry of our solid along z-axis. Setting $x=r \cos \theta$ and $y=r \sin \theta$, the equation above becomes

$$
r^{2}=1-r
$$

After rearranging as $r^{2}+r-1=0$, we find the only positive solution is $\frac{-1+\sqrt{5}}{2}$. Then our integral should be expressible as an integral over $\theta \in[0,2 \pi]$ and $r \in\left[0, \frac{-1+\sqrt{5}}{2}\right]$. We do top function (cone) minus bottom function (paraboloid), to get

$$
\iint_{R}\left(1-\sqrt{x^{2}+y^{2}}-\left(x^{2}+y^{2}\right)\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{\frac{-1+\sqrt{5}}{2}}\left(1-r-r^{2}\right) r d r d \theta
$$

7. $(1+1=2)$ Prove the integration by parts formula

$$
\int_{0}^{a} f(x) g(x) d x=f(a) \int_{0}^{a} g(y) d y-\int_{x=0}^{a} \frac{d f}{d x} \int_{y=0}^{x} g(y) d y d x
$$

by changing the order of integration and using the fundamental theorem of calculus.

Solution: We'll collapse the RHS:
The integral $\int_{x=0}^{a} \frac{d f}{d x} \int_{y=0}^{x} g(y) d y d x$ is over the area below the line $y=x$, above the x -axis, and bounded to the right by $x=a$. Hence

$$
\int_{x=0}^{a} \frac{d f}{d x} \int_{y=0}^{x} g(y) d y d x=\int_{y=0}^{a} g(y) \int_{x=y}^{a} \frac{d f}{d x} d x d y
$$

By the fundamental theorem of calculus this is $\int_{y=0}^{a} g(y)(f(a)-f(y)) d y$
Hence

$$
\begin{gathered}
R H S=f(a) \int_{0}^{a} g(y) d y-\int_{y=0}^{a} g(y)(f(a)-f(y)) d y= \\
f(a) \int_{0}^{a} g(y) d y+\int_{y=0}^{a} g(y) f(y) d y-f(a) \int_{0}^{a} g(y) d y=\int_{y=0}^{a} g(y) f(y) d y=\text { LHS }
\end{gathered}
$$

Therefore QED.
8. (Optional) Find the maximum value of the function $f(x, y, z)=x+y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=1$.

Solution: Basically, the problem asks to maximize f subject to two constraints:

$$
\begin{aligned}
& g(x, y, z)=x+y+z=1 \\
& h(x, y, z)=y^{2}+z^{2}=1
\end{aligned}
$$

We'll do this problem by the method of Lagrange Multipliers: First compute

$$
\begin{aligned}
& \nabla f(x, y, z)=\langle 1,1,0\rangle \\
& \nabla g(x, y, z)=\langle 1,1,1\rangle \\
& \nabla h(x, y, z)=\langle 0,2 y, 2 z\rangle
\end{aligned}
$$

We know $\nabla f=\lambda \nabla g+\mu \nabla h$ for some scalars λ, μ. So, along with the two constraints, we have the following system of equations:

$$
\begin{cases}1 & =\lambda \tag{1}\\ 1 & =\lambda+2 \mu y \\ 0 & =\lambda+2 \mu z \\ x+y+z & =1 \\ y^{2}+z^{2} & =1\end{cases}
$$

We get $\lambda=1$ from equation (1). Putting this into equations (2) and (3), we get that $\mu y=0$ and $\mu z=-\frac{1}{2}$. Hence we know $\mu \neq 0$. So $y=0$. From (5) we know $z= \pm 1$. If $z=1$ then from (4) we know $x=-1$. And if $z=-1$ then $x=1$.

Hence our critical points along the constraints are $(-1,0,1)$ where $f=-1$ and $(1,0,-1)$ where $f=1$. Hence the maximum value of f along the constraints is 1 .
9. (Optional) The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on the ellipse that are nearest and farthest from the origin.

Solution: We need to find the extreme values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ (this corresponds to distance function from origin squared) subject to the two constraints $g=x+y+2 z=2$ and $h=x^{2}+y^{2}-z=0$. Using the gradient equation

$$
\nabla f=\lambda \nabla g+\mu \nabla h
$$

we obtain the system

$$
\left\{\begin{array}{l}
2 x=\lambda+2 \mu x \\
2 y=\lambda+2 \mu y \\
2 z=2 \lambda-\mu \\
x+y+2 z=2 \\
x^{2}+y^{2}-z=0
\end{array}\right.
$$

Solving the equations, we obtain the points $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2)$. Then we have $f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ (which is closest to the origin) and $f(-1,-1,2)=6$ (which is farthest from the origin).

