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M20550 Calculus III Tutorial
Worksheet 6

1. Evaluate the double integral
∫∫

R
(1−x)dA, for R = [0, 1]× [0, 1], by identifying it as the

volume of a solid.

Solution: This integral is the volume of a solid whose base is R = [0, 1]× [0, 1] and
whose height at any given (x, y) ∈ [0, 1]× [0, 1] is (1− x). This solid is a triangular
prism on its side. The volume is

(area of the triangle× length of the prism) = (0.5)× 1 = 0.5

So ∫∫
R

(1− x)dA = 0.5

2. Evaluate the iterated integral.

(a)
∫ 2

0

∫ π
0
r sin2 θ dθdr

Solution: Since the region of integration is rectangular and the function is
separable in θ and r, we can split it as a product of two integrals∫ 2

0

r dr ·
∫ π

0

sin2 θ dθ = 2 ·
∫ π

0

1

2
(1− cos 2θ) dθ = π

(b)
∫∫

R
ye−xydA on R = [0, 2]× [0, 3]

Solution: Notice that the region is rectangular, so the order of integration
doesn’t matter. However, we cannot separate this as a product of two integrals,
since x and y are mixed variables in the function (we can’t write it as a product
of two functions f(x) times g(y)).

We could try to integrate with respect to y first, but that would require inte-
gration by parts. It turns out it is easier to start with x instead:∫ 3

0

∫ 2

0

ye−xydxdy =

∫ 3

0

[−e−xy]x=2
x=0dy =

∫ 3

0

(−e−2y + 1)dy =
1

2
e−6 +

5

2



Name: SOLUTIONS Date: 10/11/2018

3. Use polar coordinates to show that∫ +∞

−∞

∫ +∞

−∞
e−(x

2+y2)dA = π

and deduce that
∫ +∞
−∞ e−x

2
dx =

√
π.

Solution: We convert to polar coordinates, remembering that dx dy becomes
r dr dθ. For the bounds, notice the original integral covers the entire plane. Thus
we have ∫ 2π

0

∫ ∞
0

e−r
2

r dr dθ

which now allows us to use u-substitution (which was impossible in the original
integral). We take u = r2, so that du = 2r dr. At the same time we may compute
the integral over theta (which is 2π), so we have

π

∫ ∞
0

e−udu = π

Now, since the original integrand is a separable function of x and y, i.e. it may
be written as a product e−x

2
e−y

2
, and the region of integration is rectangular, our

integrals are independent and we may write the original question as∫ +∞

−∞
e−x

2

dx ·
∫ +∞

−∞
e−y

2

dy

If we think of y as a dummy variable, we notice that this is the integral we are trying
to show equal to

√
π, times itself. This proves the desired result, since we have(∫ +∞

−∞
e−x

2

dx

)2

= π

so ∫ +∞

−∞
e−x

2

dx =
√
π

4. Evaluate the given integral. ∫∫
R

arctan
(y
x

)
dA

where R = {(x, y) : 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x}.
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Solution:

5. Find the volume of the solid enclosed by the paraboloid z = x2 +y2 and the plane z = 1.

Solution: Over any point (r, θ) inside the unit circle, there is 1− (x2 + y2) = 1− r2
of a volume over it. Hence the total volume is∫

inside the unit circle

(1− r2)dA =

∫ 1

r=0

∫ 2π

θ=0

(1− r2)(rdθdr) =

2π

∫ 1

r=0

(r − r3) = 2π(
r2

2
− r4

4
)| = 2π ∗ 1

4
= π/2

6. Set up, but do not evaluate, the integral that gives the volume of the solid region bounded
by the paraboloid z = x2 + y2 and the cone z = 1−

√
x2 + y2.

Solution: The region of integration will be the interior of the projection of the
curve of intersection of z = x2 + y2 with z = 1−

√
x2 + y2. Setting the two equal to

each other, we have
x2 + y2 = 1−

√
x2 + y2
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and due to the appearence of sums of x2 and y2, we choose to convert to polar
coordinates. This choice is reinforced by the rotational symmetry of our solid along
z-axis. Setting x = r cos θ and y = r sin θ, the equation above becomes

r2 = 1− r

After rearranging as r2 +r−1 = 0, we find the only positive solution is −1+
√
5

2
. Then

our integral should be expressible as an integral over θ ∈ [0, 2π] and r ∈ [0, −1+
√
5

2
].

We do top function (cone) minus bottom function (paraboloid), to get∫∫
R

(
1−

√
x2 + y2 − (x2 + y2)

)
dxdy =

∫ 2π

0

∫ −1+
√
5

2

0

(1− r − r2)r dr dθ

7. (1+1=2 ) Prove the integration by parts formula∫ a

0

f(x)g(x)dx = f(a)

∫ a

0

g(y)dy −
∫ a

x=0

df

dx

∫ x

y=0

g(y)dydx

by changing the order of integration and using the fundamental theorem of calculus.

Solution: We’ll collapse the RHS:

The integral
∫ a
x=0

df
dx

∫ x
y=0

g(y)dydx is over the area below the line y = x, above the
x-axis, and bounded to the right by x = a. Hence∫ a

x=0

df

dx

∫ x

y=0

g(y)dydx =

∫ a

y=0

g(y)

∫ a

x=y

df

dx
dxdy.

By the fundamental theorem of calculus this is
∫ a
y=0

g(y)(f(a)− f(y))dy

Hence

RHS = f(a)

∫ a

0

g(y)dy −
∫ a

y=0

g(y)(f(a)− f(y))dy =

f(a)

∫ a

0

g(y)dy +

∫ a

y=0

g(y)f(y)dy − f(a)

∫ a

0

g(y)dy =

∫ a

y=0

g(y)f(y)dy = LHS

Therefore QED.

8. (Optional) Find the maximum value of the function f(x, y, z) = x + y on the curve of
intersection of the plane x+ y + z = 1 and the cylinder y2 + z2 = 1.
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Solution: Basically, the problem asks to maximize f subject to two constraints:

g(x, y, z) = x+ y + z = 1

h(x, y, z) = y2 + z2 = 1

We’ll do this problem by the method of Lagrange Multipliers: First compute

∇f(x, y, z) = 〈1, 1, 0〉
∇g(x, y, z) = 〈1, 1, 1〉
∇h(x, y, z) = 〈0, 2y, 2z〉

We know ∇f = λ∇g+µ∇h for some scalars λ, µ. So, along with the two constraints,
we have the following system of equations:

1 = λ (1)

1 = λ+ 2µy (2)

0 = λ+ 2µz (3)

x+ y + z = 1 (4)

y2 + z2 = 1 (5)

We get λ = 1 from equation (1). Putting this into equations (2) and (3), we get that
µy = 0 and µz = −1

2
. Hence we know µ 6= 0. So y = 0. From (5) we know z = ±1.

If z = 1 then from (4) we know x = −1. And if z = −1 then x = 1.

Hence our critical points along the constraints are (−1, 0, 1) where f = −1 and
(1, 0,−1) where f = 1. Hence the maximum value of f along the constraints is 1.

9. (Optional) The plane x+ y + 2z = 2 intersects the paraboloid z = x2 + y2 in an ellipse.
Find the points on the ellipse that are nearest and farthest from the origin.

Solution: We need to find the extreme values of f(x, y, z) = x2 + y2 + z2 (this
corresponds to distance function from origin squared) subject to the two constraints
g = x+ y + 2z = 2 and h = x2 + y2 − z = 0. Using the gradient equation

∇f = λ∇g + µ∇h
we obtain the system 

2x = λ+ 2µx

2y = λ+ 2µy

2z = 2λ− µ
x+ y + 2z = 2

x2 + y2 − z = 0



Name: SOLUTIONS Date: 10/11/2018

Solving the equations, we obtain the points
(
1
2
, 1
2
, 1
2

)
and (−1,−1, 2). Then we have

f
(
1
2
, 1
2
, 1
2

)
= 3

4
(which is closest to the origin) and f(−1,−1, 2) = 6 (which is farthest

from the origin).


