M20550 Calculus III Tutorial Worksheet 7

1. Using spherical coordinates, compute the volume, $V(R)$ of a sphere of radius R.

Solution: This is equivalent to just computing

$$
\iiint_{\text {Sphere }} d V
$$

(intuitively, we are summing up the volumes of infinitely many infinitesimally small boxes of volume " $d V$ " inside the sphere.) Recall that the standard spherical coordinates are

$$
(x, y, z)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)
$$

for $(\rho, \theta, \phi) \in[0, R] \times[0,2 \pi) \times(0, \pi)$ and the volume element of the sphere with respect to these coordinates is given by $d V=\rho^{2} \sin \phi d \theta d \phi d \rho$. So,

$$
\begin{aligned}
V(R) & =\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \phi d \rho \\
& =2 \pi \int_{0}^{R} \int_{0}^{\pi} \rho^{2} \sin \phi d \phi d \rho \\
& =4 \pi \int_{0}^{R} \rho^{2} d \rho \\
& =\frac{4}{3} \pi R^{3}
\end{aligned}
$$

2. Now compute the surface area, $A(R)$, of a sphere of radius R. Hint: Recall the Fundamental Theorem of Calculus:

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

And recall the common problem from single variable calculus where you have to find the volume of a water tank of height h by integrating the cross sectional area, $A(y)$, over the height.

$$
\operatorname{Volume}(\text { Tank })=\int_{0}^{h} A(y) d y
$$

We have a similar formula for the volume of the sphere;

$$
V(R)=\int_{0}^{R} A(\rho) d \rho
$$

Solution: Let $A(\rho)$ be the surface area of the sphere of radius ρ, we wish to find $A(R)$. Observe

$$
\int_{0}^{R} A(\rho) d \rho=V(R)=\frac{4}{3} \pi R^{3}
$$

So by the fundamental theorem of calculus, we get

$$
A(R)=\frac{d}{d R}\left[\int_{0}^{R} A(\rho) d \rho\right]=\frac{d V(R)}{d R}=4 \pi R^{2}
$$

Another way to solve this problem is to realize through geometric intuition or by reasoning similar to the argument above that

$$
A(R)=\int_{0}^{\pi} \int_{0}^{2 \pi} R^{2} \sin \phi d \theta d \phi
$$

3. (a) Let E_{1} be the solid that lies under the plane $z=1$ and above the region in the $x y$ plane bounded by $x=0, y=0$, and $2 x+y=2$. Write the triple integral $\iiint_{E_{1}} x z d V$ but do not evaluate it.

Solution:

(b) Let E_{2} be the solid region in the first octant that lies under the paraboloid
$z=2-x^{2}-y^{2}$. Write the triple integral $\iiint_{E_{2}} x z d V$ in cylindrical coordinates (you don't need to evaluate it).

Solution:

(b) Let E_{2} be the solid region in the first octant that lies under the paraboloid

(c) Let E_{3} be the solid region that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$. Write the triple integral $\iiint_{E_{3}} x z d V$ in spherical coordinates (you don't need to evaluate it).

Solution:

4. Write the integral that computes the volume of the part of the solid cylinder $x^{2}+y^{2} \leq 1$ that lies between the planes $z=0$ and $z=2-y$.

Solution: This is best done in cylindrical coordinates,

$$
\iiint_{R} d V=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2-r \sin \theta} r d z d \theta d r
$$

5. Find the mass of the solid between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ whose density is $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.

Solution: Let E be the solid in consideration. Now, to find the mass, we simply
integrate the density function over the entire solid to get;

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{\pi} \int_{0}^{2 \pi} \delta(\rho) \rho^{2} \sin \phi d \theta d \phi d \rho & =\int_{1}^{2} A(\rho) \delta(\rho) d \rho \\
& =\int_{1}^{2} 4 \pi \rho^{2} \rho^{2} d \rho \\
& =\left.4 \pi \frac{\rho^{5}}{5}\right|_{1} ^{2} \\
& =4 \pi\left(\frac{32}{5}-\frac{1}{5}\right) \\
& =\frac{124 \pi}{5}
\end{aligned}
$$

Note: The fact that the density only depended on ρ simplified our work here.
6. Find the center of mass of the solid S bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$ if S has constant density 1 and total mass $\frac{\pi}{2}$. (Hint: \bar{x} and \bar{y} can be found by symmetry of the solid being considered).

Solution: Since the density is constantly 1, we just need to compute the average values of x, y and z inside this solid. Because the solid is rotationally symmetric about the z-axis, we get $\bar{x}=\bar{y}=0$. Now we compute

$$
\begin{aligned}
\bar{z} & =\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{z}} z r d r d \theta d z \\
& =\left.\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} z \frac{r^{2}}{2}\right|_{0} ^{\sqrt{z}} d \theta d z \\
& =\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{z^{2}}{2} d \theta d z \\
& =2 \int_{0}^{1} z^{2} d z \\
& =\frac{2}{3}
\end{aligned}
$$

so the center of mass is given by $\left(0,0, \frac{2}{3}\right)$.
7. In this problem, we are going to calculate the same integral in two different ways by changing coordinates. Compute the following integral;

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y
$$

first, by making the coordinate change $u=x^{2}, v=x y$, and then as you normally would. (Don't forget to multiply by the Jacobian!)

Solution:

We first compute the Jacobian;

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2 \sqrt{u}} & 0 \\
\frac{-v}{u^{\frac{3}{2}}} & \frac{1}{\sqrt{u}}
\end{array}\right|=\frac{1}{2 u}
$$

(note: u is always positive so we don't need to take the absolute value) now, we know by the change of variables formula that

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y=\int_{0}^{1} \int_{0}^{\sqrt{u}} u v \frac{1}{2 u} d v d u=\left.\int_{0}^{1} \frac{v^{2}}{4}\right|_{v=0} ^{v=\sqrt{u}} d u=\int_{0}^{1} \frac{u}{4} d u=\frac{1}{8}
$$

If we compute this integral in the usual way, we get;

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y=\int_{0}^{1} \frac{y}{4} d y=\frac{1}{8} .
$$

