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M20550 Calculus III Tutorial
Worksheet 8

1. Compute

∫∫
R

1

2
dA where R is the region bounded by 2x2 + 2xy + y2 = 8 using the

change of variables given by x = u+ v and y = −2v.

Solution: We know R is the region bounded by 2x2 + 2xy + y2 = 8. Using the
transformation x = u + v and y = −2v, the boundary 2x2 + 2xy + y2 = 8 will turn
into

2(u+ v)2 + 2(u+ v)(−2v) + (−2v)2 = 8.

=⇒ u2 + v2 = 4.

So, the transformation of R, denote S, is the region bounded by the circle u2+v2 = 4
in the uv-plane.

Before proceeding to compute the double integral, we need to find the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣ 1 1
0 −2

∣∣∣∣ = (1)(−2)− (1)(0) = −2.

Thus, ∫∫
R

1

2
dA =

∫∫
S

1

2

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dA
=

∫ 2π

0

∫ 2

0

1

2
| − 2|r dr dθ

=

∫ 2π

0

1

2
r2
∣∣∣∣r=2

r=0

dθ

=

∫ 2π

0

2 dθ

= 4π.
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2. Let R be the parallelogram enclosed by the lines x+ 3y = 0, x+ 3y = 2, x+ y = 1, and
x+ y = 4. Evaluate the following integral by making appropriate change of variables∫∫

R

x+ 3y

(x+ y)2
dA.

Solution: Observe the set of equations:

x+ 3y = 0 x+ 3y = 2

x+ y = 1 x+ y = 4

So, if we let
u = x+ 3y and v = x+ y,

then the transformation of R, denote S, is given by the region bounded by the lines

u = 0 u = 2

v = 1 v = 4

So, S is the region bounded by the rectangle [0, 2]× [1, 4] in the uv-plane.

Next, we need to compute the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ .
In order to compute these partials, we need to write x and y in terms of u and v.
We have

x+ 3y = u (eq 1)

x+ y = v (eq 2)

(eq 1)− (eq 2) is equivalent to 2y = u− v =⇒ y =
1

2
u− 1

2
v. And (eq 1)− 3(eq 2)

gives −2x = u− 3v =⇒ x = −1

2
u+

3

2
v. So,

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
−1

2

3

2

1

2
−1

2

∣∣∣∣∣∣∣∣∣ =

(
−1

2

)(
−1

2

)
−
(

3

2

)(
1

2

)
= −1

2
.
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And so, we get ∫∫
R

x+ 3y

(x+ y)2
dA =

∫∫
S

u

v2

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dA
=

∫ 4

1

∫ 2

0

u

v2

∣∣∣∣−1

2

∣∣∣∣ du dv
=

∫ 4

1

1

4
u2v−2

∣∣∣∣u=2

u=0

dv

=

∫ 4

1

v−2 dv

= −1

v

∣∣∣∣4
1

= −1

4
+ 1 =

3

4
.
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3. Evaluate the line integral

∫
C

(z−2xy) ds along the curve C given by r(t) = 〈sin t, cos t, t〉 ,

0 ≤ t ≤ π

2
.

Solution:

∫
C

(z − 2xy) ds is a line integral with respect to arc length (because of

the ds at end). Since r(t) = 〈sin t, cos t, t〉, we get x(t) = sin t, y(t) = cos t, z(t) = t.
So, z − 2xy = t− 2 sin t cos t. And r′(t) = 〈cos t,− sin t, 1〉. So,

ds = |r′(t)|dt =
√

(x′)2 + (y′)2 + (z′)2 dt =
√

cos2 t+ (− sin t)2 + 12 dt =
√

2 dt.

Thus, for 0 ≤ t ≤ π

2
,

∫
C

(z − 2xy) ds =

∫ π/2

0

(t− 2 sin t cos t)
√

2 dt

=
√

2

[
1

2
t2 − sin2 t

]π/2
0

=
√

2

[
π2

8
− 1

]
.

4. Find

∫
C

2xy3 ds where C is the upper half of the circle x2 + y2 = 4.

Solution: First, let’s parametrize the curve C. C is the upper half of the circle
x2 + y2 = 4. So, we can let

x(t) = 2 cos t, y(t) = 2 sin t for 0 ≤ t ≤ π.

Then, x′(t) = −2 sin t and y′(t) = 2 cos t. Therefore,

ds =
√

(x′)2 + (y′)2 dt =
√

(−2 sin t)2 + (2 cos t)2 dt =
√

4 sin2 t+ 4 cos2 t dt = 2 dt.

Thus, for 0 ≤ t ≤ π, ∫
C

2xy3 ds =

∫ π

0

2 (2 cos t) (2 sin t)3 2 dt

=

∫ π

0

64
(
sin3 t

)
(cos t) dt

= 8
[
sin4 t

]π
0

= 0.
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5. Calculate the line integral

∫
C

(y2 +x) dx+4xy dy where C is the arc of x = y2 from (1, 1)

to (4, 2).

Solution: First, we need to parametrize the curve C. Since C is a part of the curve
x = y2, we can let y = t; then we have x = t2. Moreover, since the curve C is
the part from (1, 1) to (4, 2), we get 1 ≤ y ≤ 2. So, we have 1 ≤ t ≤ 2. Thus, a
parametrization of C is as follows:

x(t) = t2, y(t) = t for 1 ≤ t ≤ 2.

Now,

∫
C

(y2 +x) dx+ 4xy dy is a line integral with respect to x and y because we see

the dx and dy. Here,

dx = x′(t) dt = 2t dt and dy = y′(t) dt = 1 dt.

So, for 1 ≤ t ≤ 2,∫
C

(y2 + x) dx+ 4xy dy =

∫ 2

1

[ (
t2 + t2

)
2t+ 4(t2)(t)

]
dt

=

∫ 2

1

8t3 dt

=
[
2t4
]2
1

= 25 − 2 = 30.

6. Evaluate the line integral

∫
C

z2 dx+x dy+y dz where C is the line segment from (1, 0, 0)

to (4, 1, 2).

Solution: First, we parametrize C, the line segment from (1, 0, 0) to (4, 1, 2). For
0 ≤ t ≤ 1, C can be written as the vector function

r(t) = 〈1, 0, 0〉+ t

(
〈4, 1, 2〉 − 〈1, 0, 0〉

)
= 〈1, 0, 0〉+ t 〈3, 1, 2〉 .

So, x(t) = 1 + 3t, y(t) = t, and z(t) = 2t for 0 ≤ t ≤ 1. Then,

dx = x′(t) dt = 3 dt, dy = y′(t) dt = 1 dt, dz = z′(t) dt = 2 dt.
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Hence, for 0 ≤ t ≤ 1,∫
C

z2 dx+ x dy + y dz =

∫ 1

0

[
(2t)2(3) + (1 + 3t)(1) + t(2)

]
dt

=

∫ 1

0

[
12t2 + 5t+ 1

]
dt

=

[
4t3 +

5

2
t2 + t

]1
0

=
15

2
.
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7. Compute

∫
C

x2 ds where C is the intersection of the surface x2 + y2 + z2 = 4 and

the plane z =
√

3.

Solution: The intersection of the sphere x2 + y2 + z2 = 4 and
the plane z =

√
3 is the circle

x2 + y2 +
(√

3
)2

= 4, z =
√

3

or simply x2 + y2 = 1, z =
√

3.

Thus, a parametrization of C could be

r(t) =
〈

cos t, sin t,
√

3
〉

for 0 ≤ t ≤ 2π.

Then, r′(t) = 〈− sin t, cos t, 0〉 =⇒ |r′(t)| =
√

(− sin t)2 + cos2 t = 1.
So ds = |r′(t)| dt = 1 dt. Finally, for 0 ≤ t ≤ 2π,∫

C

x2 ds =

∫ 2π

0

(
cos2 t

)
dt

=

∫ 2π

0

1

2

(
1 + cos 2t

)
dt

=
1

2

[
t+

1

2
sin(2t)

]2π
0

= π.


