M20550 Calculus III Tutorial Worksheet 9

- 1. Determine whether or not the following vector fields are conservative:
 - (a) $\mathbf{F} = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$
 - (b) $\mathbf{F} = \mathbf{i} + \sin z \, \mathbf{j} + y \cos z \, \mathbf{k}$
- 2. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = -2xy \mathbf{i} + 4y \mathbf{j} + \mathbf{k}$ and $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + \mathbf{k}$, $0 \le t \le 2$.
- 3. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = (y^2 \cos(xy^2) + 3x^2)\mathbf{i} + (2xy\cos(xy^2) + 2y)\mathbf{j}$ is a conservative vector field and C is any curve from the point (-1, 0) to (1, 0).
- 4. Use Green's Theorem to evaluate

$$\int_C \left(-\frac{y^3}{3} + \sin x \right) \, dx + \left(\frac{x^3}{3} + y \right) \, dy,$$

where C is the circle of radius 1 centered at (0, 0) oriented counterclockwise when viewed from above.

- 5. A particle starts at the origin (0,0), moves along the x-axis to (2,0), then along the curve $y = \sqrt{4 x^2}$ to the point (0,2), and then along the y-axis back to the origin. Find the work done on this particle by the force field $\mathbf{F}(x,y) = y^2 \mathbf{i} + 2x(y+1) \mathbf{j}$.
- 6. (a) Compute div F, where F = ⟨e^y, zy, xy²⟩.
 (b) Is there a vector field G on ℝ³ such that curl G = ⟨xyz, -y²z, yz²⟩? Why?
- 7. Parametrize the following surfaces:
 - (a) Part of the cylinder $x^2 + y^2 = 9$ between z = -1 and z = 2.
 - (b) Par of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant.
 - (c) Part of the paraboloid $z = x^2 + y^2$ which lies inside the cylinder $x^2 + y^2 = 1$
- 8. Write an equation of the tangent plane to the parametric surface

$$x = u^2 + 1$$
, $y = v^3 + 1$, $z = u + v$,

at the point (5, 2, 3).

- 9. Write the integral that computes the surface area of the surface S parametrized by $\mathbf{r}(u, v) = \langle u^2 \cos v, u^2 \sin v, v \rangle$, where $0 \le u \le 1$ and $0 \le v \le \pi$.
- 10. Find the area of the part of the paraboloid $z = x^2 + y^2$ which lies inside the cylinder $x^2 + y^2 = 1$.