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M20550 Calculus III Tutorial
Worksheet 9

1. Determine whether or not the following vector fields are conservative:

(a) F = (3 + 2xy) i + (x2 − 3y2) j

(b) F = i + sin z j + y cos z k

Solution: (a) Since F is a vector field on R2, we use the criterion
∂P

∂y
?
=
∂Q

∂x
to see

if F is conservative or not. We have F = 〈3 + 2xy, x2 − 3y2〉. So, P = 3 + 2xy and
Q = x2 − 3y2 and

∂P

∂y
= 2x =

∂Q

∂x
.

Since
∂P

∂y
=
∂Q

∂x
, F is a conservative vector field on R2.

(b) Since F is a vector field on R3, we use the criterion curl F
?
= 0 to see if F is

conservative or not. We have F = 〈1, sin z, y cos z〉. And

curl F = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

1 sin z y cos z

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈cos z − cos z, 0, 0〉 = 〈0, 0, 0〉 = 0.

Since curl F = 0, F is a conservative vector field on R3.

2. Evaluate

∫
C

F ·dr, where F(x, y, z) = −2xy i+4y j+k and r(t) = t i+ t2 j+k, 0 ≤ t ≤ 2.

Solution: Since x = t, y = t2, z = 1, we have

F(r(t)) = −2t3i + 4t2j + k = 〈−2t3, 4t2, 1〉,
and

r′(t) = i + 2tj = 〈1, 2t, 0〉
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The line integral of F along C is∫
C

F · dr =

∫ 2

0

F(r(t)) · r′(t) dt

=

∫ 2

0

〈−2t3, 4t2, 1〉 · 〈1, 2t, 0〉 dt

=

∫ 2

0

(
−2t3 + 8t3

)
dt

=

∫ 2

0

6t3 dt

=
6t4

4

∣∣∣∣2
0

=
3 · 24

2
− 0

= 24.

Remark: Note that F is not a conservative vector field, so we cannot apply the
Fundamental Theorem of Line Integrals in this example. To see this note that

curl F = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

−2xy 4y 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈0, 0, 2x〉 6= 0.

3. Evaluate

∫
C

F · dr, where F = (y2 cos(xy2) + 3x2) i+ (2xy cos(xy2) + 2y) j is a conserva-

tive vector field and C is any curve from the point (−1, 0) to (1, 0).

Solution: Since we know F is a conservative vector field, F = ∇f for some scalar
function f(x, y). So,

∫
C
F · dr =

∫
C
∇f · dr. Then, by the fundamental theorem of

line integral (FTLI), we have
∫
C
∇f · dr = f(1, 0)− f(−1, 0). So, let’s go about and

find the potential function f(x, y) of F first.

We know F = ∇f , so 〈y2 cos(xy2)+3x2, 2xy cos(xy2)+2y〉 = 〈fx, fy〉. Thus, we have

fx = y2 cos(xy2) + 3x2 (1)

fy = 2xy cos(xy2) + 2y (2)
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Using equation (1), we have f =
∫

(y2 cos(xy2)+3x2) dx = sin(xy2)+x3 +g(y). Now,
we need to find g(y) to complete f .

With f = sin(xy2) + x3 + g(y), we compute fy = 2xy cos(xy2) + g′(y). Then from
equation (2) above, we must have

2xy cos(xy2) + g′(y) = 2xy cos(xy2) + 2y =⇒ g′(y) = 2y =⇒ g(y) = y2 + C.

We only need a potential function to apply FTLI, so we can pick C = 0. So, a
potential function f(x, y) of the vector field F is

f(x, y) = sin(xy2) + x3 + y2.

Finally, ∫
C

F · dr =

∫
C

∇f · dr FTLI
= f(1, 0)− f(−1, 0)

= (sin 0 + 13 + 02)− (sin 0 + (−1)3 + 02)

= 2.

4. Use Green’s Theorem to evaluate∫
C

(
−y

3

3
+ sinx

)
dx+

(
x3

3
+ y

)
dy,

where C is the circle of radius 1 centered at (0, 0) oriented counterclockwise when viewed
from above.

Solution: Let D be the region enclosed by the unit circle C in this problem. By
Green’s Theorem, we have∫

C

(
−y

3

3
+ sinx

)
dx+

(
x3

3
+ y

)
dy =

∫∫
D

x2 − (−y2) dA.

(
Here, we have P = −y

3

3
+ sinx and Q =

x3

3
+ y, so

∂P

∂y
= −y2 and

∂Q

∂x
= x2.

)
So, instead of computing the line integral

∫
C

(
−y

3

3
+ sinx

)
dx+

(
x3

3
+ y

)
dy, we

are going to compute the double integral

∫∫
D

x2 + y2 dA, where D is the unit disk

as shown below.
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Using polar coordinates,∫∫
D

x2 + y2 dA =

∫ 2π

0

∫ 1

0

r3 dr dθ = 2π

(
1

4

)
=
π

2
.

Hence, ∫
C

(
−y

3

3
+ sinx

)
dx+

(
x3

3
+ y

)
dy =

π

2
.

5. A particle starts at the origin (0, 0), moves along the x-axis to (2, 0), then along the
curve y =

√
4− x2 to the point (0, 2), and then along the y-axis back to the origin. Find

the work done on this particle by the force field F(x, y) = y2 i + 2x(y + 1) j.

Solution: First we note that the curve C (drawn below) is a positively oriented,
piecewise-smooth, simple closed curve in the plane. Let D be the region bounded by
C.
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The components of the vector field, P = y2 and Q = 2x(y + 1), have continuous
partial derivatives on an open region containing D (namely, all of R2). We may
apply Green’s Theorem:∫

C

P dx+Q dy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Note that we have ∂Q
∂x

= 2(y + 1) = 2y + 2 and ∂P
∂y

= 2y. Finally, we compute the
work done on the particle by the force field.

W =

∫
C

F · dr =

∫
C

y2 dx+ 2x(y + 1) dy

Green
=

∫ ∫
D

(2y + 2− 2y) dA

= 2

∫ ∫
D

dA

Note that this is just twice the area of the region D. We may compute this as a

double integral using polar coordinates

(
W = 2

∫ π/2

0

∫ 2

0

r dr dθ

)
or by using the

formula for the area of a circle. Thus,

W = 2(Area of D) = 2

(
π · 22

4

)
= 2π.

6. (a) Compute div F, where F = 〈ey, zy, xy2〉 .
(b) Is there a vector field G on R3 such that curlG = 〈xyz,−y2z, yz2〉? Why?
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Solution: (a) div F =
∂

∂x
(ey) +

∂

∂y
(zy) +

∂

∂z
(xy2) = 0 + z + 0 = z

(b) For this problem, we need to remember the fact

div curl F = 0 for any vector field F.

If there is a vector field G on R3 such that curlG = 〈xyz,−y2z, yz2〉 then by the
fact above, G would satisfy the rule

div curlG = 0 or div
〈
xyz,−y2z, yz2

〉
= 0.

But,

div
〈
xyz,−y2z, yz2

〉
=

∂

∂x
(xyz) +

∂

∂y
(−y2z) +

∂

∂z
(yz2) = yz − 2yz + 2yz = yz 6= 0.

Thus, there is no such G.

7. Parametrize the following surfaces:
(a) Part of the cylinder x2 + y2 = 9 between z = −1 and z = 2.
(b) Par of the sphere x2 + y2 + z2 = 4 in the first octant.
(c) Part of the paraboloid z = x2 + y2 which lies inside the cylinder x2 + y2 = 1

Solution: (a) We can let x(u, v) = 3 cosu and y(u, v) = 3 sinu and z(u, v) = v. The
domain for (u, v) would then be 0 ≤ u ≤ 2π and −1 ≤ v ≤ 2. So a parametrization
is

r(u, v) = 〈3 cosu, 3 sinu, v〉 , where 0 ≤ u ≤ 2π and − 1 ≤ v ≤ 2.

(b) For this part of the sphere, we choose φ and θ to be the parameters. And since
the radius of this sphere is 2, we have

x(φ, θ) = 2 sinφ cos θ, y(φ, θ) = 2 sinφ sin θ, z(φ, θ) = 2 cosφ,

where the domain is 0 ≤ φ ≤ π

2
and 0 ≤ θ ≤ π

2
since this part of the sphere is in the

first octant. Thus, a parametrization is

r(φ, θ) = 〈2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ〉 , where 0 ≤ φ ≤ π

2
and 0 ≤ θ ≤ π

2
.

(c) For this surface, we want to parametrize the paraboloid z = x2 + y2 with the
condition that all the x’s and y’s must satisfy x2 + y2 ≤ 1 (since we’re looking at the
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part of the paraboloid inside the cylinder x2 + y2 = 1.) We can choose x and y to
be the parameters, then we have

x(x, y) = x, y(x, y) = y, z(x, y) = x2 + y2, where x2 + y2 ≤ 1.

So, a parametrization is

r(x, y) =
〈
x, y, x2 + y2

〉
and the domain is x2 + y2 ≤ 1.

8. Write an equation of the tangent plane to the parametric surface

x = u2 + 1, y = v3 + 1, z = u+ v,

at the point (5, 2, 3).

Solution: The surface is given by the vector equation r(u, v) = 〈u2 + 1, v3 + 1, u+ v〉.
So, a normal vector to the tangent plane at (5, 2, 3) is given by ru × rv at the point
(5, 2, 3).

First, ru = 〈2u, 0, 1〉 and rv = 〈0, 3v2, 1〉. Now, we want to find (u, v) corresponds to
the point (x, y, z) = (5, 2, 3). So, we want to find (u, v) that satisfies:

5 = u2 + 1, 2 = v3 + 1, 3 = u+ v.

2 = v3 + 1 implies v = 1. So, 3 = u + v =⇒ 3 = u + 1 =⇒ u = 2. And we see
that u = 2 satisfies the equation 5 = u2 + 1. Thus, (u, v) = (2, 1) gives the points
(x, y, z) = (5, 2, 3).

Now, with u = 2 and v = 1, we have ru = 〈4, 0, 1〉 and rv = 〈0, 3, 1〉. So, ru × rv =
〈4, 0, 1〉 × 〈0, 3, 1〉 = 〈−3,−4, 12〉 . So, 〈−3,−4, 12〉 can be chosen as a normal vector
to the tangent plane at the point (5, 2, 3). And so, an equation of this tangent plane
is given by

〈−3,−4, 12〉 • 〈x, y, z〉 = 〈−3,−4, 12〉 • 〈5, 2, 3〉

=⇒ −3x− 4y + 12z = 13.

9. Write the integral that computes the surface area of the surface S parametrized by
r(u, v) = 〈u2 cos v, u2 sin v, v〉, where 0 ≤ u ≤ 1 and 0 ≤ v ≤ π.
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Solution: The area of the surface S is given by

Area(S) =

∫∫
D

|ru × rv| dA.

where D is the region given by 0 ≤ u ≤ 1 and 0 ≤ v ≤ π. With r(u, v) =
〈u2 cos v, u2 sin v, v〉, we have ru = 〈2u cos v, 2u sin v, 0〉 and rv = 〈−u2 sin v, u2 cos v, 1〉 .
Then

ru × rv = 〈2u cos v, 2u sin v, 0〉 ×
〈
−u2 sin v, u2 cos v, 1

〉
=
〈
2u sin v,−2u cos v, 2u3

〉
.

So,

|ru × rv| =
∣∣〈2u sin v,−2u cos v, 2u3

〉∣∣
=
√

(2u sin v)2 + (−2u cos v)2 + (2u3)2

=
√

4u2 + 4u6

=
√

4u2(1 + u4) = 2u
√

1 + u4.

Finally,

Area(S) =

∫∫
D

|ru × rv| dA =

∫∫
D

2u
√

1 + u4 dA =

∫ 1

0

∫ π

0

2u
√

1 + u4 dv du.

10. Find the area of the part of the paraboloid z = x2 + y2 which lies inside the cylinder
x2 + y2 = 1.

Solution: Denote S the surface given by the part of the paraboloid z = x2 + y2

which lies inside the cylinder x2+y2 = 1. Since the surface S is given by the equation
z = x2 + y2, we can use the following formula to compute the area of S:

Area(S) =

∫∫
D

√
1 + (zx)2 + (zy)2 dA

=

∫∫
D

√
1 + (2x)2 + (2y)2 dA

=

∫∫
D

√
1 + 4(x2 + y2) dA.

Here, D is the projection of S onto the xy-plane. So, D is the unit disk in the
xy-plane.
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We use polar coordinate to compute the double integral above.∫∫
D

√
1 + 4(x2 + y2) dA =

∫ 2π

0

∫ 1

0

√
1 + 4r2 r dr dθ

=

∫ 2π

0

1

8

(
2

3

)(
1 + 4r2

)3/2 ∣∣r=1

r=0
dθ

=

∫ 2π

0

1

12

(
53/2 − 1

)
dθ

=
π

6

(
53/2 − 1

)
.

So, the area of the given surface is
π

6

(
53/2 − 1

)
.

Alternatively , if you don’t want to remember two formulas for surface area. You
can still do this problem by using the formula

Area(S) =

∫∫
D

|ru × rv| dA.

In this case, we need a parametrization of S. Since the surface is given by the
paraboloid z = x2 + y2, we can let x and y be the parameters and have z = x2 + y2.
But the surface lies inside the cylinder x2 + y2 = 1, so x and y lie inside the unit
disk x2 + y2 ≤ 1 in the xy-plane. So, a parametrization of S is given by

r(x, y) =
〈
x, y, x2 + y2

〉
, for (x, y) ∈ D,

where D is the disk centered at (0, 0) with radius 1 in the xy-plane as shown in the
picture above.

Then, rx = 〈1, 0, 2x〉 and ry = 〈0, 1, 2y〉. So, rx × ry = 〈−2x,−2y, 1〉. Then,

|rx × ry| =
√

4x2 + 4y2 + 1 =
√

1 + 4(x2 + y2). And so,

Area(S) =

∫∫
D

|rx × ry| dA =

∫∫
D

√
1 + 4(x2 + y2) dA =

π

6

(
53/2 − 1

)
(as above).


