Math 20580 Name:

Midterm 2 Instructor:

October 26, 2017 Section:
Calculators are NOT allowed. Do not remove this answer page — you will return the whole
exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are
finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions
each worth 11 points. Record your answers by placing an x through one letter for each
problem on this answer sheet.

Sign the pledge. “On my honor, I have neither given nor received unauthorized aid on
this Exam”:

—

[ I DA [d] <]
[e] (o] [e] D [e]
[a] o] DX (4] [e]
[a] ] L] {a] X
Do) [e][a] [e]
o] X Le] [a] [e]
o] (o] [e] D [e]
o] B[ [a] ]

[\

w

N

[@at

(@)

~J

oo

Multiple Choice.

10.
11.

12.

Total



Part I: Multiple choice questions (7 points each)

1. Find the determinant of the matrix

2. Find the matrix of change of coordinates CPB between the following bases of R*:
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3. Consider the space C(R) of continuous functions on R and let H be the subspace of
C(R) spanned by the functions {1,sin#, cos®¢,sin¢cost,sin 2¢,cos 2t}. What is the
dimension of H?

(a) 1 (b) 2 (c) 3 (d) 4 (e) H is infinite-dimensional

Hint. You may use the trig identities:  sin2t = 2sintcost cos2t = 2cos*t — 1.
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4. Find the eigenvalues of the matrix
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5. Find the area of the parallelogram whose vertices are

(0,-2), (6,—1),(=3,1),(3,2).
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6. Which of the following statements are always true?
X 1. Row-equivalent matrices have the same characteristic equations.

/11 Similar matrices have the same eigenvalues.

« III. The determinant of a square matrix is equal to the product of the diagonal
entries.

(a) L. is true but II. and III. are false @II. is true but I. and III. are false
(c) III. is true but I. and II. are false (d) All of them are true
(e) None of them are true
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7. The vector v = —1; 32] is a complex eigenvector of the matrix A = B :_)5J :
What is the corresponding complex eigenvalue?
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8. Consider the following basis of R® consisting of orthogonal vectors:
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Find the B-coordinate vector [0]z where o/ = | —2].
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Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix
2 2
A= 1|1 1
-3 -3
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(a) Find a basis for Row(A) (the row space of A).
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(b) Determine the rank of A and the dimension of the null space of A.
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(¢) Give an example of a non-zero unit vector which is orthogonal to Row(A).
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10. Consider the vector space Py of polynomials of degree at most two, and the
transformation T : P, — R? given by

(a) Show that B = {1 + 2 — ¢, (1 +t)*} is a basis of P.
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(b) Find the matrix of T relative to the basis B of P, from part (a) and the standard
basis of R? (you may use that 7T is a linear transformation without explaining why).
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(c) Suppose that p(t) is a polynomial whose B-coordinate vector is [p(t)|z = {— 1} :

1
Find p(t) and T'(p(t)).
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11. Consider the matrix A = [1 9

1}. Determine whether A is diagonalizable or not.
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12. Consider the vectors 4 = [2} and U = {O} :
3 1

(a) Find the orthogonal projection of ¥ onto L = Span{u}.
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(b) Find the distance from v to L.
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