Part I: Multiple choice questions (7 points each)
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1. Find the closest point to |1| in the subspace of R® spanned by [1| and | 1 |.
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2. Which of the following is a least square solution X to the equation
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3. Which of the following functions is a solution to the initial value problem

Wyt rn w0 =17
@)y = g2 6= (@)= 77+
@y=t-1  ()y=;+1

: o 4]
Tﬂif')’& prd (VL [/éwvvw\ov ¢ @ Gae  YlO) =0 +
-/f[“‘va @/@[ @‘@~

) )\11 _,L_“ .
@ ﬁ“ > 6*‘)1"1’4—

(5 ‘t) +/e\ (ﬁjl

4. Let A be an m x n matrix. Which of the following may be false?

(a) The equation AT Ax = A”b is always consistent for any b in R™.

ATA is invertible.

(c) A solution to ATAx = ATb is a least squares solution of Ax = b.
(d) The columns of AT lie in the column space of AT A.
(e) If AT Ax = ATDb then Ax — b is orthogonal to Col(A).
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5. Which of the following is a general solution to the differential equation
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(a) zy + ysiny —siny = ¢ (b) zy + ycosy —siny = cy

(c) zy +ysiny —cosy = ¢ (d) zy + ycosy —siny = ¢
(e) xy + ycosy —cosy = ¢
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6. Consider the initial value problem
. dy
sin(2z) + cos(3y)% =0 y(n/2)=n/3

Which of the following implicitly defines the solution?
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(c) sin(2z) + cos(Sy) (d) —cos(2z) + sin(3y) = —
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7. Let y(t) be the unique solution of the initial value problem

t?—t

s YB/2)=0

(t2 — t)% + cos(mt)y =

What is the largest interval where y is defined?
(a)t >0 (b)0<t<2 @1<t<2 (d)t<1/2 (e) t <2
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8. A tank initially contains 100/ of pure water. Then, at ¢ = 0, a sugar solution with
concentration of 4g/l starts being pumped into the tank at a rate of 5//min. The
tank is kept well mixed, and the solution is being pumped out at the rate of 4//min.
Which of the following is the initial value problem for y(t) = quantity of sugar, in
grams, in the tank at time ¢7
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Part II: Partial credit questions (11 points each). Show your work.

9. Using the Gram-Schmidt Process, find an orthonormal basis of the subspace of R*

1 1 1
spanned by the vectors 8 , % and i’ .
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10. By drawing a direction field, sketch two(solutions to the ODE
dy 9
29— -9
il A
with initial conditions y(0) = 1 and y(0) = 3.

Indicate clearly the limiting behavior tlim y(t) and tlim y(t).
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11. Find the function y(t), for ¢ > 0, which solves the initial value problem
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12. Consider the differential equation

(a) Find the general solution.
(b) Find the solution with y(0) = 1.
(c) What is the largest interval in which the solution in part (b) is defined?
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