Name:

M20580 L.A. and D.E. Tutorial Quiz 3

1. For each of the following linear transformations, determine their standard matrices:

a) $T\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}x_1 - x_2 + x_3\\-x_1 + x_2 - 2x_3\\x_2 + 3x_3\end{bmatrix}$ b) $T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}-x+y\\-2x\\y\end{bmatrix}$

Solution: Remember that the dimension of the input is the number of columns and the dimension of the output is the number of rows. So, the first matrix is 3×3 . Label the columns as x_1 , x_2 and x_3 and read off the coefficients from the output:

a)
$$[T] = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -2 \\ 0 & 1 & 3 \end{bmatrix}$$

Similarly, in the second case there are two columns (the dimension of the input is two) and three rows:

b)
$$[T] = \begin{bmatrix} -1 & 1 \\ -2 & 0 \\ 0 & 1 \end{bmatrix}$$

2. For the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -1 \end{bmatrix}$, answer the following questions:

a) Does
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
 belong to $\operatorname{Col}(A)$?
b) Does $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$ belong to $\operatorname{Row}(A)$?
c) Does $\begin{bmatrix} -1\\-1\\1 \end{bmatrix}$ belong to $\operatorname{Null}(A)$?

Note: we don't give credit for a guess, you should clearly show the technique or reference relevant theorems.

Solution: a) Augment A by $\begin{bmatrix} 1\\0 \end{bmatrix}$ and row reduce it: $\begin{bmatrix} 1 & 2 & 3\\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 3\\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix}$ We can see that the corresponding linear system is consistent, for there are no contradictions in the above REF. Therefore, the vector does belong to Col(A).

b) Augment A on the bottom by the row, transpose and row reduce:

1	-1	1		1	-1	1		1	-1	1	
2	0	1	\sim	0	2	-1	\sim	0	2	-3	.
3	-1	-1		0	2	-4		0	0	-3	

There is a contradiction in the last row: 0 = -3, which indicates the system is not consistent. Therefore, the row does not belong to Row(A).

c) To answer this question, multiply A by the given vector:

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Since the resulting vector is the zero vector, we conclude that the vector belongs to Null(A).