M20580 L.A. and D.E. Tutorial Quiz 4

1. Consider the invertible matrix

$$P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- (a) If P is the change of basis matrix from the basis $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$ to the standard basis of \mathbb{R}^2 , what are the coordinate vectors of $\mathbf{v_1}$ and $\mathbf{v_2}$ with respect to the standard basis?
- (b) If P is the change of basis matrix from the standard basis of \mathbb{R}^2 to the basis $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$, what are the coordinate vectors of $\mathbf{v_1}$ and $\mathbf{v_2}$ with respect to the standard basis?

Solution:

- (a) If P is the change of basis matrix from the basis $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$ to the standard basis of \mathbb{R}^2 , then with respect to the standard basis $\mathbf{v_1} = \begin{bmatrix} a \\ c \end{bmatrix}$, and $\mathbf{v_2} = \begin{bmatrix} b \\ d \end{bmatrix}$.
- (b) If P is the change of basis matrix from the standard basis of \mathbb{R}^2 to the basis $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$, then P^{-1} is the change of basis matrix from basis the $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}\}$ to the standard basis of \mathbb{R}^2 . Since $P^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, then with respect to the standard basis $\mathbf{v_1} = \begin{bmatrix} \frac{d}{ad-bc} \\ -\frac{c}{ad-bc} \end{bmatrix}$, and $\mathbf{v_2} = \begin{bmatrix} \frac{-b}{ad-bc} \\ -\frac{a}{ad-bc} \end{bmatrix}$.
- 2. Let p(x) = 1 2x, $q(x) = x x^2$, and $r(x) = -2 + 3x + x^2$ be polynomials in \mathcal{P}_2 . Determine whether $s(x) = 3 - x - 5x^2$ is in span $\{p(x), q(x), r(x)\}$.

Note: No credit for a Yes/No guess. You should clearly show the technique or reference relevant theorems.

Solution: The coordinate vectors of these polynomials with respect to the standard basis of \mathcal{P}_2 are

$$[p(x)]_{std} = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \quad [q(x)]_{std} = \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}, \quad [r(x)]_{std} = \begin{bmatrix} -2\\ 3\\ 1 \end{bmatrix}, \quad [s(x)]_{std} = \begin{bmatrix} 3\\ -1\\ -5 \end{bmatrix}.$$

Name:

The equation ap(x) + bq(x) + cr(x) = s(x) in the unknown a, b, c, gives us a linear system whose augmented matrix is

$$\begin{bmatrix} 1 & 0 & -2 & 3 \\ -2 & 1 & 3 & -1 \\ 0 & -1 & 1 & -5 \end{bmatrix}.$$

This row reduces to
$$\begin{bmatrix} 1 & 0 & -2 & | & 3 \\ 0 & 1 & -1 & | & 5 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

which tell us there are infinitely many solutions. So, s(x) is in span $\{p(x), q(x), r(x)\}$.