M20580 L.A. and D.E.
 Quiz 7

1. For matrix $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$.
(a) What is the characteristic polynomial of A?
(b) What are the eigenvalues of A?
(c) What are the eigenvectors (up to scalars) with respect to each eigenvalues?.
(d) Check if A is diagonalizable. If A is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(e) Use result from (d) to compute A^{100}.
(you don't need to calculate the hundredth powers of numbers; for instance, leave 2^{100} without further calculating it)

Solution:

(a) The characteristic polynomial of A is:
$p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}1-\lambda & 4 \\ 3 & 2-\lambda\end{array}\right]=\lambda^{2}-3 \lambda-10=(\lambda+2)(\lambda-5)$
(b) $0=(\lambda+2)(\lambda-5)$ give us $\lambda=-2$ and $\lambda=5$
(c) - For $\lambda=-2$:

$$
\left(A+2 I_{2}\right) \mathbf{x}=0 \Longleftrightarrow\left[\begin{array}{ll}
3 & 4 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0,
$$

and hence

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{c}
4 \\
-3
\end{array}\right], t \in \mathbb{R}
$$

- For $\lambda=5$: using the same method, the eigenvectors are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right], t \in \mathbb{R}
$$

(d) According to the theory of diagonalization, the following matrices

$$
P=\left[\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right]
$$

satisfy $A=P D P^{-1}$.
(e)

$$
\begin{aligned}
P & =\left[\begin{array}{cc}
4 & 1 \\
-3 & 1
\end{array}\right] \Longrightarrow P^{-1}=\frac{1}{7}\left[\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right] \\
D & =\left[\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right] \Longrightarrow D^{100}=\left[\begin{array}{cc}
(-2)^{100} & 0 \\
0 & 5^{100}
\end{array}\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
A^{100} & =\left(P D P^{-1}\right)^{100}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right) \\
& =P D\left(P^{-1} P\right) D\left(P^{-1} P\right) D \ldots\left(P^{-1} P\right) D P^{-1} \\
& =P D^{100} P^{-1} \\
& =\frac{1}{7}\left[\begin{array}{cc}
(3) 5^{100}+2^{102} & 4 \cdot 5^{100}-2^{102} \\
(3) 5^{100}-(3) 2^{100} & 3 \cdot 2^{100}+(4) 5^{100}
\end{array}\right]
\end{aligned}
$$

