M20580 L.A. and D.E. Quiz 8

1. Find the least squares solution to the following system:

$$\begin{cases} x_1 + x_2 &= 1\\ x_1 - x_2 &= 1\\ x_1 &= -1 \end{cases}$$

Solution: The matrix of the system is

$$A = \begin{bmatrix} 1 & 1\\ 1 & -1\\ 1 & 0 \end{bmatrix}.$$

From $A^T A \mathbf{x} = A^t \mathbf{x}$, we have a system

$$\begin{cases} 3x_1 = 1\\ 2x_2 = 0 \end{cases}$$

hence the least squares solution is given by $x_1 = 1/3$ and $x_2 = 0$. Note that despite the fact $x_1 = -1$ was given in third initial equation, the least squares procedure assigned a different value to x_1 to reconcile it in an optimal way with the other two equations.

2. Find a basis for the orthogonal complement of a subspace V of \mathbb{R}^3 given by

$$V = \operatorname{span}\left\{ \begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\6 \end{bmatrix} \right\}.$$

Solution: If A is a matrix obtained by concatenating basis columns of V, then $V^{\perp} = \text{null}(A^T)$. So,

$$A^{T} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \end{bmatrix}.$$

From the last RREF, we see that

$$V^{\perp} = \operatorname{null}(A^T) = \operatorname{span}\left\{ \begin{bmatrix} -4\\ -2\\ 1 \end{bmatrix} \right\}.$$