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M20580 L.A. and D.E. Tutorial
Worksheet 10

1. Find the QR factorization of the matrix

A =

0 −1 2
1 −1 2
1 −1 0

 .

Solution: First we use Gram-Schmidt process to produce an orthogonal set.

v1 = x1 =

0
1
1

 ,

v2 = x2 −
(
v1 · x2

v1 · v1

)
v1 =

−1
−1
−1

− −2

2

0
1
1

 =

−1
0
0


v3 = x3 −

(
v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

=

2
2
0

− 2

2

0
1
1

− −2

1

−1
0
0

 =

 0
1
−1


Then the orthonormal basis for col(A) is

{
v1
‖v1‖

,
v2
‖v2‖

,
v3
‖v3‖

}
=


 0

1/
√

2

1/
√

2

 ,

−1
0
0

 ,

 0

1/
√

2

−1/
√

2

 .

A = QR for some upper triangular matrix R, to find R we use the fact that Q has
orthonormal columns, hence QTQ = I. Therefore QTA = QTQR = IR = R

R = QTA =

 0 1/
√

2 1/
√

2
−1 0 0

0 1/
√

2 −1/
√

2

0 −1 2
1 −1 2
1 −1 0

 =

2/
√

2 −2/
√

2 2/
√

2
0 1 −2

0 0 2/
√

2

 .

A = QR =

 0 −1 0

1/
√

2 0 1/
√

2

1/
√

2 0 −1/
√

2

√2 −
√

2
√

2
0 1 −2

0 0
√

2

 .
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2. Let W = span


2

0
1

 ,

2
1
1

. Write a formula (as a matrix) for projW (x), the orthogonal

projection from R3 to W . This matrix, P , is called the standard matrix of the orthogonal
projection onto the subspace W . Use this matrix to find the orthogonal projection of

v =

1
1
1

 onto W .

Hint: you will need an orthogonal basis for W and a formula for projW (x) in terms of the

orthogonal basis. So, we want a matrix P such that projW (x) = P · x.

Solution: Recall that if W is a subspace of V , and w1, . . . wk is an orthogonal basis
of W , then:

projW (x) = projw1
(x) + · · ·+ projwk

(x)

where for each vector v
projv(x) =

(v · x
v · v

)
v.

Then first, we must find an orthogonal basis for W using Gram-Schmidt:

w1 = x1 =

2
0
1

 ,

w2 = x2 −
(

v1 · x2

w1 · w1

)
w1 =

2
1
1

− 5

5

2
0
1

 =

0
1
0



We have

projW (x) = proj[ 2
0
1

](x) + proj[ 0
1
0

](x)

=
2x1 + x3

5

2
0
1

+
x2

1

0
1
0


=

1

5

4x1 + 2x3

0
2x1 + x3

+

 0
x2

0


=

1

5

4x1 + 2x3

5x2

2x1 + x3

 =
1

5

4 0 2
0 5 0
2 0 1

x1

x2

x3


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Therefore,

P =
1

5

4 0 2
0 5 0
2 0 1


and

projW

1
1
1

 = P

1
1
1

 =
1

5

4 0 2
0 5 0
2 0 1

1
1
1

 =

6/5
1

3/5


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3. For each of the following differential equations, first check if it is linear, then solve it
using an appropriate method.

(a)
dy

dt
= ty2 cos t, y(0) = 1

(b) t
dy

dt
= t2 + y, y(1) = −2 for t > 0,

(c) y′ = 2ty + 3t2et
2
,

(d) t2
dy

dt
+ ty = 1, assuming t > 0.

Solution:

(a) The DE is not linear. Using the method of separation of variables, we have:

dy

dt
= ty2 cos t

=⇒ dy

y2
= t cos t dt

=⇒
∫

y−2dy =

∫
t cos t dt

Integration by parts:

u = t =⇒ du = dt

dv = cos t dt =⇒ v = sin t

=⇒ y−1

−1
= t sin t−

∫
sin t dt

=⇒ − y−1 = t sin t− (− cos t) + C

=⇒ − y−1 = t sin t + cos t + C.

Since y(0) = 1, we have

− 1−1 = 0 sin 0 + cos 0 + C =⇒ C = −1−1 − cos 0 = −1− 1 = −2.

Therefore,

− y−1 = t sin t + cos t− 2

=⇒ y−1 = 2− t sin t− cos t

=⇒ y =
1

2− t sin t− cos t
.
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(b) The DE is linear. We have

t
dy

dt
= t2 + y

=⇒ t
dy

dt
− y = t2

=⇒ dy

dt
− t−1 · y = t

Multiplying both sides of the equation by the following integrating factor

I = e
∫
−t−1dt = e− ln |t| = e− ln t (|t| = t as t > 0)

I = t−1. (Note: e− lnx is NOT −x)

We then have

t−1
dy

dt
− t−2y = 1

=⇒ (t−1y)′ = 1

=⇒ t−1y =

∫
1 · dt

=⇒ t−1y = t + C

=⇒ y = t2 + Ct.

Since y(1) = −2, we have

−2 = 12 + C · 1 =⇒ C = −2− 1 = −3.

Therefore, y = t2 − 3t .

(c) The DE is linear. We have

y′ = 2ty + 3t2et
2

=⇒ y′ − 2t · y = 3t2et
2

.

We multiply both sides of the equation by the following integrating factor

I = e
∫
(−2t)dt = e−t

2

.

We then have

y′e−t
2 − 2te−t

2

y = 3t2

=⇒ (ye−t
2

)′ = 3t2

=⇒ ye−t
2

=

∫
3t2dt

=⇒ ye−t
2

= t3 + C

y = et
2
(t3 + C) ,

where C is an arbitrary constant.
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(d) The DE is linear. We have

t2
dy

dt
+ ty = 1

=⇒ dy

dt
+ t−1 · y = t−2.

We multiply both sides of the equation by the following integrating factor

I = e
∫
t−1dt = eln |t| = |t| = t. (|t| = t for t > 0)

We have

t
dy

dt
+ y = t−1

=⇒ (ty)′ = t−1

=⇒ ty =

∫
t−1dt

=⇒ ty = ln |t|+ C

=⇒ ty = ln t + C (|t| = t for t > 0)

y = t−1 ln t + Ct−1 .
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4. The population p(t) at time t years of an animal grows according to a logistic growth
model with intrinsic growth rate 0.4 yr−1 and environment carrying capacity 4 thousand.
If harvesting is allowed at a rate of 0.3 thousand per year, sketch the graph of possible
evolution of the population, find the phase portrait and classify all critical points.

Hint: The evolution of p(t) is given by the following differential equation:

dp

dt
= 0.4p

(
1− p

4

)
− 0.3

The first step is to factor the RHS as a polynomial.

Solution: The RHS factors as

dp

dt
= −0.1(p− 1)(p− 3).

Now we need to study the sign of dp
dt

depending on the value of p. If p < 1, then
dp
dt

< 0, which means that on the phase portrait we have an arrow down ↓ (the
solution curves that start below p = 1 diverge from the line p = 1). Similarly, if
1 < p < 3, then dp

dt
> 0 (the solution curves diverge from p = 1 and converge to

p = 3). Lastly, if p > 3, then dp
dt

< 0 (the solutions converge to p = 3). Using this
information, we can draw a phase portrait:

Now, using the phase portrait, we can draw the evolution of the population:

The critical point p = 1 is unstable and p = 3 is stable.
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5. Find an implicit solution to the IVP:

sin(xy) + xy cos(xy) + 2x + (x2 cos(xy) + 2y)
dy

dx
= 0, y(4) = 0.

Solution: For a nonlinear equation this complicated, our only real hope is to see
if the equation comes from an exact differential and then proceed by by partial
integration. By multiplying both sides by dx we can arrive at the differential equation

M(x, y)dx + N(x, y)dy = 0,

with M(x, y) = sin(xy) + xy cos(xy) + 2x, and N(x, y) = x2 cos(xy) + 2y.

We now can check exactness:

My = 2x cos(xy)− x2y sin(xy) = Nx.

Since M and N are everywhere differentiable, we can conclude there is a potential
function S(x, y) defined around (4, 0) such that Sx = M and Sy = N . Integrating
partially, we find for some function g(x),

S(x, y) =

∫
N(x, y) dy = x sin(xy) + y2 + g(x).

Then differentiating this with respect to x, we see

Sx = M(x, y) = sin(xy) + xy cos(xy) + g′, so g′ = 2x, i.e. g = x2.

Therefore the general solution is

dS = 0, or x sin(xy) + x2 + y2 = C.

Now we use our initial condition, setting y = 0 and x = 4 to get C = 16; in other
words the solution is

x sin(xy) + x2 + y2 = 16.


