Name:

M20580 L.A. and D.E. Tutorial Worksheet 2

- 1. In parts (a)–(e) determine whether the statement is true or false, and justify your answer.
 - (a) If a matrix is in reduced row echelon form, then it is also in row echelon form.
 - (b) A homogeneous linear system in $n \ge 1$ unknowns whose corresponding augmented matrix has a reduced row echelon form with r leading 1's has n r free variables.
 - (c) If a homogeneous linear system of $n \ge 1$ equations in n unknowns has a corresponding augmented matrix with a reduced row echelon form containing n leading 1's, then the linear system has only the trivial solution.
 - (d) If the reduced row echelon form of the augmented matrix for a linear system has a row of zeros, then the system must have infinitely many solutions.
 - (e) If a consistent linear system has more unknowns than equations, then it must have infinitely many solutions.

Solution:

- (a) True. If a matrix is in reduced row echelon form, then in particular it is in row echelon form.
- (b) True. We have an augmented matrix with r pivot columns. Therefore, there are n r columns which are not pivots, hence n r free variables.
- (c) True. There are n pivot columns and zero free variables. So, there is a unique solution which must be the trivial one.
- (d) False. Consider the augmented matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. This matrix is in reduced row echelon form, but it has just one solution, the trivial one.
- (e) True. If there are n unknowns and m equations where n > m, then there will be at most m pivot columns and therefore at least n - m > 0 free variables. So, there will be infinitely many solutions.

2. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -4 \\ 0 & 2 \end{bmatrix}$ Compute $A^T A + 6B^{-1}$.

Solution:

$$A^{T}A + 6B^{-1} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} + \frac{6}{2} \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & 14 \\ 14 & 21 \end{bmatrix} + \begin{bmatrix} 6 & 12 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 16 & 26 \\ 14 & 24 \end{bmatrix}$$

3. Find the inverses of the following matrices if it exists

(a)
$$\begin{bmatrix} 4 & 2 \\ 7 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} -8 & -4 \\ 6 & 3 \end{bmatrix}$

Solution: We recall that for a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if $ad - bc \neq 0$, then the inverse of A is given by $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. If ad - bc = 0, then A does not have an inverse (not invertible).

(a) $3 \times 4 - 2 \times 7 = -2 \neq 0$, so the inverse is

$$\frac{1}{-2} \begin{bmatrix} 3 & -2\\ -7 & 4 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} & 1\\ \frac{7}{2} & -2 \end{bmatrix}$$

(b) $(-8) \times 3 - (-4) \times 6 = 0$ so the matrix is not invertible.

4. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$ and define a transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

Is T is a linear transformation? Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.

Solution: Let A be an $m \times n$ matrix. Then the matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(\mathbf{x}) = A\mathbf{x}$$
 (for \mathbf{x} in \mathbb{R}^n)

is a linear transformation.

So T is a linear transformation.

We then have

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 17 \\ 11 \end{bmatrix}$$

5. (a) Let $A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$.

Construct a 2×2 matrix B such that AB is the zero matrix. Use two different **nonzero** columns for B.

Solution: We note that if we write $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$, where $\mathbf{b}_1, \mathbf{b}_2$ are two column vectors in \mathbb{R}^2 , then $AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix}$ (See, e.g., textbook Theorem 3.31 and its proof). Hence, AB is a zero matrix if and only if $A\mathbf{b}_1 = A\mathbf{b}_2 = \mathbf{0}$, so we need to find two (nonzero) solutions to the system $A\mathbf{x} = \mathbf{0}$.

Write
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
. The RREF of A is $\begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$, so
$$A\mathbf{x} = \mathbf{0} \Longleftrightarrow \begin{cases} x_1 - 3x_2 &= 0 \\ 0x_1 + 0x_2 &= 0 \end{cases} \text{ (trivial)} \Leftrightarrow x_1 = 3x_2.$$

We can choose $x_2 = 1$ and then $x_2 = -1$, which gives $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, and $\mathbf{b}_2 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$, so one choice for a matrix B that satisfies AB = 0 is $B = \begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix}$.

(b) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$.

Find the conditions on a, b, c, and d such that A commutes with both B and C, that is, AB = BA and AC = CA.

Solution: We can work out to see that

$$AB = \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix}, \qquad BA = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix},$$

so by comparing entry-by-entry, we see that AB = BA if and only if b = 0 and c = 0. Likewise, we have

$$AC = \begin{bmatrix} a & -3a+b \\ c & -3c+d \end{bmatrix}, \qquad CA = \begin{bmatrix} a-3c & b-3d \\ c & d \end{bmatrix},$$

so that AC = CA if and only if a = a - 3c and -3a + b = b - 3d and -3c + d = d. Solving these three conditions simultaneously, we obtain c = 0 and a = d.

Hence, A commutes with both B and C if b = c = 0 and a = d, where a can be any number.