M20580 L.A. and D.E. Tutorial Worksheet 4

1. Given the matrix $A = \begin{bmatrix} 1 & -1 & -2 & 3 \\ -1 & 1 & 1 & 2 \\ 0 & 0 & -2 & 10 \end{bmatrix}$, find a basis for Row(A), Col(A) and Null(A).

Hint: the first step is to row reduce A. Then, the non-zero rows will form a basis of Row(A), and pivots will indicate which columns of A form a basis of Col(A) (but we do not pick columns of a REF of A for a basis of Col(A)!). For Null(A), augment A by zero and solve the resulting system.

 $\begin{array}{l} \textit{Solution: Row reduce A:} \\ \begin{bmatrix} 1 & -1 & -2 & 3 \\ -1 & 1 & 1 & 2 \\ 0 & 0 & -2 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & -2 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$ We see that a basis for Row(A) is { $\begin{bmatrix} 1 & -1 & -2 & 3 \\ 0 & 0 & -2 & 10 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & -1 & 5 \\ -1 \\ 0 \end{bmatrix}$; a basis for Col(A) can be chosen as the first and the third columns of A: { $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \\ -2 \end{bmatrix}$ }. For the null space, augment A by zero and solve $\begin{cases} x_1 - x_2 - 2x_3 + 3x_4 = 0 \\ x_3 = 5x_4 \end{cases}$ The solution is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 7 \\ 0 \\ 5 \\ 1 \end{bmatrix}.$ Therefore, a basis for Null(A) can be chosen as $\begin{cases} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ 5 \\ 1 \end{bmatrix} \right$

2. Given the set of vectors $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \right\}$ and letting **v** denote the vector $\mathbf{v} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, write **v** as a linear combination of the given vectors. Does the given set span \mathbb{R}^3 ? Is it a basis for \mathbb{R}^3 ?

Solution:

We have to try to solve the linear system with augmented matrix $\begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 1 & 0 & 2 & | & 1 \\ 1 & -1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -2 & 0 & | & 0 \\ 0 & -1 & 3 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & -1 & 3 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 &$

3. Suppose that $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ are two bases for a vector space V. Also suppose that the change-of-basis matrix from \mathcal{B} to \mathcal{C} is given as

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \left[\begin{array}{cc} 3 & 1 \\ 5 & 2 \end{array} \right].$$

For $\mathbf{v} = \mathbf{b}_1 - 3\mathbf{b}_2$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C} -coordinate for \mathbf{v} ?

Solution:

$$\mathbf{v} = \mathbf{b}_1 - 3\mathbf{b}_2$$
 means that $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.
So
 $[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

4. Find
$$C$$
 if $\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ from Question 3.

~

Name:

Solution: The basis C in terms of the standard basis \mathcal{E} comprises the columns of $P_{\mathcal{E}\leftarrow \mathcal{C}}$, which can be expressed as

$$P_{\mathcal{E}\leftarrow\mathcal{C}} = P_{\mathcal{E}\leftarrow\mathcal{B}}P_{\mathcal{B}\leftarrow\mathcal{C}} = P_{\mathcal{E}\leftarrow\mathcal{B}}(P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$$

A computation yields

$$P_{\mathcal{E}\leftarrow\mathcal{C}} = \begin{bmatrix} 0 & 1\\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 3\\ 1 & 0 \end{bmatrix}$$

Thus $C = \left\{ \begin{bmatrix} -5\\1 \end{bmatrix}, \begin{bmatrix} 3\\0 \end{bmatrix} \right\}.$

5. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} 2\\-2\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$ for \mathbb{R}^3 . If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, find \mathbf{x} (its coordinate representation in the standard basis).

