M20580 L.A. and D.E. Tutorial Worksheet 8

1. Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -3 \\ 3 & 1 & -6 \end{bmatrix}$.

(a) Compute the first column of the cofactor matrix associated to A.

(b) Using part (a) compute the determinant of A.

Solution:

(a) We compute
$$C_{11} C_{21}$$
 and C_{31} .
 $C_{11} = (-1)^{1+1} \det \begin{pmatrix} \begin{bmatrix} 0 & -3 \\ 1 & -6 \end{bmatrix} \end{pmatrix} = (-1)^{1+1} ((0)(-6) - (-3)(1)) = 3.$
 $C_{21} = (-1)^{2+1} \det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -6 \end{bmatrix} \end{pmatrix} = (-1)^{2+1} ((1)(-6) - (1)(1)) = 7.$
 $C_{31} = (-1)^{3+1} \det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix} \end{pmatrix} = (-1)^{3+1} ((1)(-3) - (1)(0)) = -3.$

(b) Using expansion along the first column, the determinant is $0C_{11}+1C_{21}+3C_{31} = 0(3) + 1(7) + 3(-3) = -2.$

2. Let T be the linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- (a) What is the matrix of T with respect to the standard bases for \mathbb{R}^3 and \mathbb{R}^2 .
- (b) If $B = \{\alpha_1, \alpha_2, \alpha_3\}$ and $\mathcal{C} = \{\beta_1, \beta_2\}$, where

$$\alpha_1 = (1, 0, -1), \quad \alpha_2 = (1, 1, 1), \quad \alpha_3 = (1, 0, 0), \quad \beta_1 = (0, 1), \quad \beta_2 = (1, 0),$$

what is the matrix of $[T]_{B\to C}$.

Solution:

- (a) Since T(1,0,0) = (1,-1), T(0,1,0) = (1,0), T(0,0,1) = (0,2), then the matrix of T is $\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$.
- (b) First, $T(1,0,-1) = (1,-3) = -3 \cdot (0,1) + 1 \cdot (1,0)$. Next, T(1,1,1) = (2,1)= $1 \cdot (0,1) + 2 \cdot (1,0)$. Lastly, T(1,0,0) = (1,-1) = -1(0,1) + 1(1,0). So, $[T]_{B\to C}$ is $\begin{bmatrix} -3 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$.

- 3. Determine whether the statement is true or false, and justify your answer.
 - (a) The determinant of the 2 × 2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad + bc.
 - (b) Two square matrices that have the same determinant must have the same size.
 - (c) For every square matrix A and every scalar c, det(cA) = c det(A).
 - (d) For all square matrices A and B, det(A + B) = det(A) + det(B).
 - (e) For every 2×2 matrix A, $\det(A^2) = (\det(A))^2$.

Solution:

- (a) False. The determinant of the 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad bc.
- (b) False. The determinants of the 2×2 identity matrix and the 3×3 identity matrix are both 1.
- (c) False. Let I be the 2×2 identity matrix. Then det(2I) = 4, but 2 det(I) = 2.
- (d) False. Let I be the 2×2 identity matrix. Then det(I + I) = det(2I) = 4, but det(I) + det(I) = 2.

(e) True. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then $A^2 = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix}$, and

$$\det(A^2) = a^2 d^2 - 2abcd + b^2 c^2 = \det(A)^2.$$

- 4. Consider the matrix $A = \begin{bmatrix} t & t & 0 \\ t^2 & 3 & 2t \\ 0 & t & t \end{bmatrix}$.
 - (a) Find the determinant of A.
 - (b) Find all values of t for which A is invertible. (Recall that a square matrix A is invertible if and only if $det(A) \neq 0$.)

Solution:

(a) Computing a cofactor expansion along the first row yields:

$$det(A) = t \begin{vmatrix} 3 & 2t \\ t & t \end{vmatrix} - t \begin{vmatrix} t^2 & 2t \\ 0 & t \end{vmatrix}$$
$$= t(3t - 2t^2) - t(t^3)$$
$$= -t^4 - 2t^3 + 3t^2.$$

(b) We need to find the roots of $-t^4 - 2t^3 + 3t^2$. Factoring, we have

$$-t^{4} - 2t^{3} + 3t^{2} = -t^{2}(t^{2} + 2t - 3) = -t^{2}(t - 1)(t + 3).$$

The roots are 0, 1, -3. So, A is invertible when $t \neq 0, 1, -3$.

5. Use Cramer's rule to find a solution to the following system of equations:

$$x - y + 2z = -3$$
$$x + 2y + 3z = 4$$
$$2x + y + z = -3$$

Solution: We can write the above equation in matrix form as follows: $\begin{bmatrix} 1 & -1 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}.$ Replacing the first column with the vector $\begin{bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}$, we obtain: $\begin{bmatrix} -3 & -1 & 2 \\ 4 & 2 & 3 \\ -3 & 1 & 1 \end{bmatrix}$. This matrix has determinant 36. The original matrix has determinant -12. So $x = \frac{36}{-12} = -3$. Replacing the second column with the vector $\begin{bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}$, we obtain: $\begin{bmatrix} 1 & -3 & 2 \\ 1 & 4 & 3 \\ 2 & -3 & 1 \end{bmatrix}$. This matrix has determinant -24. The original matrix has determinant -12. So $y = \frac{-24}{-12} = 2$. Replacing the third column with the vector $\begin{bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}$, we obtain: $\begin{bmatrix} 1 & -1 & -3 \\ 1 & 2 & 4 \\ 2 & 1 & -3 \end{bmatrix}$. This matrix has determinant -12. The original matrix has determinant -12. So $z = \frac{-12}{-12} = 1$. Finally, we can check that $\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$ is a solution: $\begin{bmatrix} 1 & -1 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}$.