Math 20580
Final Exam
December 13, 2023
Calculators are NOT allowed. You will be allowed 2 hours to do the test.
There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a b c d e
2. a b c d e
3. a b b d $\mathrm{d} \quad \mathrm{e}$
4. a b c d e
5. a b $\mathrm{b} \quad \mathrm{d} \quad \mathrm{e}$
6. a b b c $\begin{array}{llll}\text { d } & \mathrm{e}\end{array}$

7. a b c d e
8. a b c d e
9. a b c d e
10. a b e d e
11. a b c d e
12. a b $\begin{array}{lllll}\mathrm{c} & \mathrm{d} & \mathrm{e}\end{array}$
13. a b e d e
14. a b c d e
15. a b c d e
16. a b c d e
17. a b c d e
18. a b c d e
19. a b c d e
20. Let W be the column space of a 23×2023 matrix of rank 3 . What is the dimension of W^{\perp} (the orthogonal complement of W)?
(a) 3
(b) 20
(c) 23
(d) 2020
(e) 2023
21. Let M be the following matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

Which of the following are eigenvalues of M ?
$\begin{array}{llll}\text { I. } 0 & \text { II. } 1 & \text { III. } 2 & \text { IV. } 3\end{array}$
(a) I, II, and IV only
(b) I, II, and III only
(c) II, III, and IV only
(d) I and IV only
(e) II and IV only
3. Consider the bases $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}-4 \\ -10\end{array}\right]\right\}$ for \mathbb{R}^{2}.

Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$, the change of coordinate matrix from \mathcal{B} to \mathcal{C}.
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}1 / 2 & 1 \\ 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{ll}-2 & 1 \\ -1 & 0\end{array}\right]$
4. Describe the implicit solution of the exact equation

$$
\left(e^{x} \sin (y)+2 y\right) d x+\left(2 x+e^{x} \cos (y)\right) d y=0
$$

(a) $e^{x} \sin (y)=x^{2}+y^{2}+C$
(b) $e^{x} \sin (y)+2 x y+g(y)$
(c) $2 x y+e^{x} \sin (y)=C$
(d) $y=\frac{e^{x}+x^{2}}{\sin (y)}+C$
(e) $e^{x} \tan (y)=C$
5. Describe the largest interval where a solution for the following initial value problem is guaranteed to exist:

$$
\left\{\begin{array}{l}
(\cos x) y^{\prime \prime}+y^{\prime}+(\ln |x|) y=x^{2} \\
y(2)=1, y^{\prime}(2)=-1
\end{array}\right.
$$

(a) $(0, \pi)$
(b) $(-\infty, \infty)$
(c) $(-\pi / 2, \pi / 2)$
(d) $(0, \infty)$
(e) $(\pi / 2,3 \pi / 2)$
6. Let \mathcal{P}_{2} be the vector space of polynomials of degree at most 2 , and consider its basis $\mathcal{B}=\left\{1,2-t,(2-t)^{2}\right\}$. The coordinate vector of $3 t^{2}-8 t+6$ relative to the basis \mathcal{B} is:
(a) $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}3 \\ -8 \\ 6\end{array}\right]$
(d) $\left[\begin{array}{c}2 \\ -4 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
7. Consider the solution $y(x)$ of the autonomous equation

$$
\frac{d y}{d x}=y^{2} \cdot\left(y^{2}-2\right)
$$

satisfying the initial condition $y(1)=-1$. Compute $\lim _{x \rightarrow \infty} y(x)$.
(a) $\sqrt{2}$
(b) $-\infty$
(c) $-\sqrt{2}$
(d) 0
(e) ∞
8. Given the matrix $A=\left[\begin{array}{cccc}1 & -2 & 0 & 1 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]$, determine its nullity and rank.
(a) $\operatorname{nullity}(A)=1, \operatorname{rank}(A)=3$
(b) $\operatorname{nullity}(A)=2, \operatorname{rank}(A)=3$
(c) $\operatorname{nullity}(A)=0, \operatorname{rank}(A)=5$
(d) $\operatorname{nullity}(A)=1, \operatorname{rank}(A)=4$
(e) $\operatorname{nullity}(A)=2, \operatorname{rank}(A)=2$
9. The matrix $A=\left[\begin{array}{cccc}1 & -2 & -1 & 2 \\ 0 & 1 & 2 & 3 \\ 2 & -3 & -1 & 9\end{array}\right]$ has reduced row echelon form $\left[\begin{array}{cccc}1 & 0 & 0 & 14 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -2\end{array}\right]$. For which value of the parameter t is the vector $\left[\begin{array}{llll}1 & -1 & t & 0\end{array}\right]$ in the row space of A ?
(a) 2
(b) $\frac{7}{2}$
(c) 0
(d) -7
(e) -2
10. If $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$ then b_{21} is:
(a) 0
(b) $-1 / 2$
(c) -2
(d) $3 / 2$
(e) 2
11. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}-6 y^{\prime}+9 y=0 \\
y(0)=0, y^{\prime}(0)=2
\end{array}\right.
$$

(a) $2 e^{-3 t}-2$
(b) $e^{3 t}-e^{-3 t}$
(c) $2 t e^{3 t}$
(d) $-6 e^{3 t}+3$
(e) $-2 e^{t}+e^{-2 t}$
12. Find the Wronskian $W\left(f_{1}, f_{2}, f_{3}\right)$ where $f_{1}(x)=x, f_{2}(x)=x^{2}$ and $f_{3}(x)=1 / x$.
(a) x^{2}
(b) 0
(c) $\frac{x^{2}+x^{3}+1}{x}$
(d) $\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ln (x)$
(e) $\frac{6}{x}$
13. Consider the differential equation $y^{\prime \prime}+4 y=4 \sin (2 x)$. Use the method of undetermined coefficients to find a particular solution.
(a) $A e^{4 x}$
(b) $-x \cos (2 x)$
(c) $e^{2 x} \sin (2 x)$
(d) $-2 \cos (2 x)$
(e) $x \sin (2 x)+\cos (2 x)$
14. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{2 x}{y+x^{2} y} \\
y(0)=1
\end{array}\right.
$$

(a) $x^{2} \ln (x)+1$
(b) $\sqrt{2 \ln \left(x^{2}+1\right)+1}$
(c) $(x-1)^{2}$
(d) $\ln \left(x^{2}+1\right)+1$
(e) there is no solution
15. Which of the following matrices is similar to $A=\left[\begin{array}{cc}-3 & 41 \\ -1 & 7\end{array}\right]$.
(a) $\left[\begin{array}{cc}-1 & -3 \\ 7 & 41\end{array}\right]$
(b) $\left[\begin{array}{cc}20 & 21 \\ -4 & -7\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}2 & 4 \\ -4 & 2\end{array}\right]$
(e) $\left[\begin{array}{cc}-3 & 0 \\ 0 & 7\end{array}\right]$
16. Find the matrix R in the $Q R$ decomposition of $A=\left[\begin{array}{lll}0 & -1 & 2 \\ 1 & -1 & 2 \\ 1 & -1 & 0\end{array}\right]$, provided that

$$
Q=\left[\begin{array}{ccc}
0 & -1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

(a) $\left[\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{8}\end{array}\right]$
(b) $\left[\begin{array}{ccc}\sqrt{2} & -\sqrt{2} & \sqrt{2} \\ 0 & 1 & -2 \\ 0 & 0 & \sqrt{2}\end{array}\right]$
(c) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
(d) $\left[\begin{array}{ccc}\sqrt{2} & -\sqrt{3} & -1 \\ 0 & \sqrt{3} & \sqrt{2} \\ 0 & 0 & \sqrt{8}\end{array}\right]$
(e) none of the above
17. Which of the following describes the least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -1 \\
1 & 5
\end{array}\right] \quad \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(a) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ only
(b) $\left[\begin{array}{c}1 / 2 \\ -3\end{array}\right]$ only
(c) $\left[\begin{array}{l}5 / 6 \\ 1 / 3\end{array}\right]$ only
(d) infinitely many solutions
(e) no solutions
18. Which formula describes the general solution of the differential equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=0, t>0
$$

given the fact that $y_{1}(t)=e^{t}$ is a solution of this equation.
(a) $c_{1}+c_{2} e^{t}$
(b) $c_{1} e^{t}+c_{2} t e^{t}$
(c) $c_{1} e^{t}+c_{2} \ln (t+1)$
(d) $c_{1} e^{t}+c_{2} e^{-t}$
(e) $c_{1} e^{t}+c_{2}(t+1)$
19. Consider the differential equation $x^{2} y^{\prime \prime}-2 y=3 x^{2}-1$. The functions

$$
y_{1}=x^{2} \quad \text { and } \quad y_{2}=x^{-1}
$$

form a fundamental set of solutions for the associated homogeneous equation. Which of the following describes a particular solution of the non-homogeneous equation?
(a) $x^{2}-\frac{1}{x}$
(b) $c_{1} x^{2}+c_{2} x^{-1}$
(c) $x^{2} \ln (x)+\frac{1}{2}$
(d) $\frac{x^{2}}{3 x^{2}-1}$
(e) $\frac{x^{3}}{3}+\ln (x)$
20. Find the general solution of the equation

$$
\left(4+x^{2}\right) \frac{d y}{d x}+2 x y=4 x
$$

(a) $\frac{2 x^{2}+C}{4+x^{2}}$
(b) $\ln \left(4+x^{2}\right)+C$
(c) $\frac{C}{4+x^{2}}$
(d) $\frac{2 x}{4+x^{2}}+C$
(e) cannot be found explicitly using methods we learned

