Math 20580
Midterm 1
September 19, 2023

Name:
Instructor:
\qquad

Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

$$
\begin{aligned}
& \text { 1. } a, b, c|c| c
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } a, b \text { c } x \text { d } \\
& \text { 4. } a \text { b } c \text { d } e \\
& \text { 5. a b c d e }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } \mathrm{a} \text { b } \mathrm{b} \text { c } \mathrm{d}, \mathrm{e} \\
& \text { 8. } a, b \text { d } e
\end{aligned}
$$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Consider the linear system

$$
\left\{\begin{array}{l}
2 x+3 y=a \\
4 x+5 y=b
\end{array}\right.
$$

If (x, y) is a solution, which of the following describes y in terms of a, b ?
(a) $y=(-5 a+3 b) / 2$
(b) $y=6 a+8 b$
(c) $y=2 a-b$
(d) $y=2 a+5 b$
(e) y is not determined by a, b
2. Consider the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$. Which of the following sets of vectors span \mathbb{R}^{2} ?
(I) $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
(II) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
(III) $\left\{\vec{v}_{2}\right\}$
(IV) $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$
(a) III only
(b) I and III only
(c) I and II only
(d) II and IV only
(e) III and IV only
3. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the linear map given by counterclockwise rotation of the plane about the origin by an angle of $\frac{\pi}{4}$ (in radians). Let A be the standard matrix of T. Which of the following matrices is equal to A^{2} ?
(a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
4. Under which of the scenarios below is the equation $A \vec{x}=\vec{b}$ guaranteed to have at least one solution?
I. A is a 3×4 matrix and \vec{b} is any vector in the column space of A.
II. A is a 4×3 matrix of rank 2 and \vec{b} is any vector in \mathbb{R}^{4}.
III. A is a 3×3 matrix and \vec{b} is a vector in the null space of A.
IV. A is an invertible 2×2 matrix and \vec{b} is the zero vector in \mathbb{R}^{2}.
(a) I and IV only
(b) IV only
(c) I, III, and IV only
(d) II and IV only
(e) III only
5. Given the matrices

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]
$$

determine $A^{-1} B-A B^{T}$.
(a) $\left[\begin{array}{cc}1 & 3 \\ -1 & -2\end{array}\right]$
(b) $\left[\begin{array}{cc}-3 & 1 \\ 5 & -2\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{cc}4 & 2 \\ -6 & 0\end{array}\right]$
6. Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
1-t \\
1+t \\
1
\end{array}\right]
$$

For which value of t does the vector \vec{v}_{3} belong to $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$?
(a) all $t \leq 2$
(b) $t=2$ and $t=-1$
(c) $t=-3$ only
(d) $t=0$ only
(e) no value of t
7. Which of the following sets is linearly independent?
(I) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]\right\}$
(II) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$
(III) $\left\{\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$
(IV) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
(a) I, II, III only
(b) II and IV only
(c) I and II only
(d) III and IV only
(e) I, III, IV only
8. Let A be a 7×8 matrix of rank 3 . Which of the following is equal to the dimension of the null space of the transpose matrix A^{T} ?
(a) 0
(b) 3
(c) 4
(d) 5
(e) 7

Part II: Partial credit questions (11 points each). Show your work.
9. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 1 & 2 & 1 \\
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 1 & -1 \\
1 & 0 & 1 & 0 & 2
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Col}(A)$ (the column space of A).
(b) Find a basis for $\operatorname{Row}(A)$ (the row space of A).
(c) Find a basis for $\operatorname{Nul}(A)$ (the null space of A).
10. Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 5 & 2
\end{array}\right]
$$

11. Consider the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right]
$$

and the matrix transformation $S(\vec{x})=A \vec{x}$, where

$$
A=\left[\begin{array}{cc}
-1 & -3 \\
2 & 3 \\
-2 & -2
\end{array}\right]
$$

(a) Find the standard matrix of T.
(b) Find the standard matrices of the compositions $S \circ T$ and $T \circ S$.
(c) Find a vector \vec{v} in \mathbb{R}^{3} with $T(\vec{v})=\left[\begin{array}{c}3 \\ -5\end{array}\right]$.
12. Consider the bases \mathcal{B} and \mathcal{C} of \mathbb{R}^{3} given by

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
5 \\
2
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]\right\}
$$

(a) Find the change of coordinate matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C} (recall that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \cdot[\vec{x}]_{\mathcal{B}}$ for all vectors \vec{x} in $\left.\mathbb{R}^{3}\right)$.
(b) If $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, determine the coordinate vectors $[\vec{v}]_{\mathcal{B}}$ and $[\vec{v}]_{\mathcal{C}}$.

