Math 20580
Midterm 2
October 26, 2023
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
8. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Suppose that A, B, C are 2×2 matrices such that $\operatorname{det}(A)=1 / 3$, $\operatorname{det}(B)=2$ and $\operatorname{det}(C)=-2$. What is $\operatorname{det}\left(3 A^{T} B^{-1} C\right)$?
(a) 1
(b) -3
(c) 2
(d) -1
(e) $1 / 3$
2. Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right]
$$

(a) $0,0,2$
(b) $0,1,2$
(c) $2,2,2$
(d) $2,4,6$
(e) $0,2,4$
3. The vector $\vec{v}=\left[\begin{array}{c}-1-3 i \\ 2\end{array}\right]$ is a complex eigenvector of the matrix $A=\left[\begin{array}{cc}3 & -5 \\ 2 & 5\end{array}\right]$. What is the corresponding complex eigenvalue?
(a) $3+2 i$
(b) $3-4 i$
(c) 2
(d) $4-3 i$
(e) $5+5 i$
4. Find the area of the parallelogram whose vertices are

$$
(0,0), \quad(5,9), \quad(7,2), \quad(12,11)
$$

(a) 14
(b) 132
(c) 53
(d) 72
(e) 59
5. Consider the vector space V of continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ and the subspace

$$
W=\operatorname{Span}\left\{1,1+e^{x},\left(1+e^{x}\right)^{2},\left(1-e^{x}\right)^{2}, 1+e^{2 x}\right\} .
$$

What is the dimension of W ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
6. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right]
$$

which has determinant equal to 1 . Find the $(2,1)$-entry of A^{-1}, that is, the entry in row 2 and column 1 of the inverse of A.
(a) -2
(b) 18
(c) 15
(d) 20
(e) -4
7. Recall that $M_{2,2}$ is the vector space of 2×2 matrices, and consider the linear transformation $T: \mathbb{R}^{3} \longrightarrow M_{2,2}$ defined by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cc}
x_{1}-x_{2} & x_{2}-x_{3} \\
0 & x_{3}-x_{1}
\end{array}\right]
$$

What is the dimension of the kernel of T ?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
8. Recall that $M_{2,2}$ is the vector space of 2×2 matrices, and that \mathcal{P}_{2} is the vector space of polynomials of degree at most 2 . Consider the transformation

$$
T: M_{2,2} \rightarrow \mathcal{P}_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b x) \cdot(c+d x)
$$

Which of the following statements are true?
I. T is a linear transformation.
II. T is not a linear transformation because $T(\overrightarrow{0}) \neq \overrightarrow{0}$.
III. T is not a linear transformation because the domain consists of matrices while the codomain consists of polynomials.
IV. T is not a linear transformation because there exist matrices A, B in $M_{2,2}$ such that $T(A+B) \neq T(A)+T(B)$.
(a) IV only
(b) I only
(c) II, III only
(d) III only
(e) II, IV only

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the bases

$$
\mathcal{B}=\left\{1+2 x+x^{2}, 1,5 x+2 x^{2}\right\} \quad \text { and } \quad \mathcal{C}=\left\{x^{2}, 1,-x\right\}
$$

of \mathcal{P}_{2} (the vector space of polynomials of degree at most 2 in the variable x).
(a) Find the change-of-basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C}.
(b) Suppose that $p(x)$ is a vector in \mathcal{P}_{2} with $[p(x)]_{\mathcal{B}}=\left[\begin{array}{c}11 \\ -10 \\ -4\end{array}\right]$. Find $p(x)$ and $[p(x)]_{\mathcal{C}}$.
10. Consider the vector space \mathcal{P}_{2} of polynomials of degree at most two, and the transformation $T: \mathcal{P}_{2} \longrightarrow \mathbb{R}^{3}$ given by

$$
T(p(x))=\left[\begin{array}{c}
p(1) \\
p^{\prime}(1) \\
p^{\prime \prime}(1)
\end{array}\right] .
$$

(a) Show that $\mathcal{B}=\left\{1+x^{2}, 2-x,(1+x)^{2}\right\}$ is a basis of \mathcal{P}_{2}.
(b) Find the matrix of T relative to the basis \mathcal{B} of \mathcal{P}_{2} from part (a) and the standard basis of \mathbb{R}^{3} (you may use that T is a linear transformation without explaining why).
11. Consider the matrix

$$
A=\left[\begin{array}{cccc}
t & 11 & 0 & 2 \\
0 & -3 & 0 & 0 \\
4 & -9 & 6 & 12 \\
2 & -20 & 0 & t
\end{array}\right]
$$

where t is some real number.
(a) Calculate the determinant of A (your answer may depend on t).
(b) Find all values of t such that A is invertible.
12. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 4 \\
0 & -4 & 0 \\
-5 & -1 & -8
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Diagonalize A, that is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

