Math 20580 Name:

Midterm 2 Instructor:

October 26, 2023 Section:

Calculators are NOT allowed. Do not remove this answer page — you will return the whole

exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are
finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions
each worth 11 points. Record your answers by placing an x through one letter for each
problem on this answer sheet.

Sign the pledge. “On my honor, I have neither given nor received unauthorized aid on
this Exam”:
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Part I: Multiple choice questions (7 points each)

1. Suppose that A, B, C' are 2 x 2 matrices such that det(A) = 1/3, det(B) = 2 and
det(C) = —2. What is det(3AT B~1C)?

(a) 1 @—3 (c) 2 (d) —1 (e) 1/3
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2. Find the eigenvalues of the matrix
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3. The vector v = -1 2_ 31] is a complex eigenvector of the matrix A = B _55] :

What is the corresponding complex eigenvalue‘7
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4. Find the area of the parallelogram whose vertices are

(0,0), (5,9), (7,2), (12,11).

(a) 14 (b) 132 &3 (d) 72 (c) 59



5. Consider the vector space V' of continuous functions f : R — R and the subspace
W = Span {1,1 +¢”, (1 + ¢%)2,(1 ex)2,1/'ﬁ} .

What is the dimension of W?
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6. Consider the matrix Q"‘S
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which has determinant equal to 1. Find the (2, 1)-entry of A™!, that is, the entry in
row 2 and column 1 of the inverse of A.
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7. Recall that M is the vector space of 2 x 2 matrices, and consider the linear
transformation T : R® —» M, 5 defined by

L1
T X1 — T2 X9 — T3
ol =
0 T3 — I
L3

What is the dimension of the kernel of T7

(a) 0 1 (c) 2 (d) 3 (e) 4
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8. Recall that Mj 4 is the vector space of 2 x 2 matrices, and that Py is the vector space
of polynomials of degree at most 2. Consider the transformation

T : Mo — P, T({Z Z])—(aerx)-(chdx).

Which of the following statements are true?

7(1. T is a linear transformation.

II. T is not a linear transformation because 7/(0) # 0.

IS t a linear transf ; orhain consists of matrices while
the 11 CONSIS ials.

IV. T is not a linear transformation because there exist matrices A, B in M2 such

that T(A+ B) # T(A) + T(B).
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Part II: Partial credit questions (11 points each). Show your work.
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9. Consider the bases ~

- -
L, v by Cr e Cy
B:{1+2x—1—x2,1,5x—|—2x2} and C = {2*1,—2}

of Py (the vector space of polynomials of degree at most 2 in the variable z).

(a) Find the change-of-basis matrix CPB from B to C.
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(b) Suppose that p(zx) is a vector in Py with [p(x)]s = |:10] . Find p(x) and [p(z)]c.
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10. Consider the vector space Py of polynomials of degree at most two, and the
transformation 7" : P, — R? given by

12 xe
(a) Show that B = {1 + 2, 2—x(1+'x )°} is a basis of Ps. %&&s ‘ ‘
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(b) Find the matrix of T relative to the basis B of P, from part (a) and the standard
basis of R® (you may use that T is a linear transformation without explaining why).
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11. Consider the matrix

%11 0 2]
=30

A:4—9612
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where t is some real number.

(a) Calculate the determinant of A (your answer may depend on t).
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(b) Find all values of ¢ such that A is invertible.
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12. Let A be the matrix
1 1 4
A=|[0 —4 0].
-5 —1 -8

(a) Find the eigenvalues of A.
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(b) Diagonalize A, that is, find an invertible matrix P and a diagonal matrix D such
that A = PDP~".
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