Math 20580
Midterm 3
November 14, 2023
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a, b, d, e
2. $\mathrm{a} \boldsymbol{X}, \mathrm{d}, \mathrm{e}$
3. $\times \sqrt[b]{c} \square$
4. a $\times \sqrt{c} \sqrt{d}$
5. a b b e
6. $X>b, d$
7. a b $\mathrm{c}, \mathrm{d}, \mathrm{e}$
8. a, b c \boldsymbol{d}

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Find the orthogonal projection of the vector $\vec{v}=\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right]$ onto the vector $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

$$
\begin{array}{ll}
\text { (a) }\left[\begin{array}{c}
3 / 7 \\
1 / 7 \\
-2 / 7
\end{array}\right] & \text { (b) } \overrightarrow{0} \quad\left[\begin{array}{l}
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right] \\
\frac{\vec{V} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{2}{3} \vec{u}=\left[\begin{array}{l}
2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
\end{array}
$$

(d) $\left[\begin{array}{c}2 \\ 0 \\ -3\end{array}\right]$
(e) $\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$
2. If A is a 4×6 matrix of rank 2 , what is the dimension of the orthogonal complement of the row space of A^{T} ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

$$
\operatorname{Row}\left(A^{\top}\right)^{\perp}=\operatorname{nul}\left(A^{\top}\right)
$$

$$
\left.\begin{array}{rl}
A^{\top} \text { has } 4 \text { columns } \\
\operatorname{mank}\left(A^{\top}\right)=2
\end{array}\right\} \Rightarrow \begin{aligned}
\text { null it } & \left(A^{\top}\right) \\
& =4-2 \\
& =2
\end{aligned}
$$

othogond basis
3. Find the distance between $\vec{w}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and the subspace $\left.W=\operatorname{Span}\left\{\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$.
(a) 1
(b) $\sqrt{3}$
(c) 2
(d) $\sqrt{2}$
(e) $\sqrt{6}$
$\begin{array}{ll}11 & 11 \\ \nabla_{1} & \vec{V}_{2}\end{array}$

$$
\begin{aligned}
\operatorname{prog}_{w}(\vec{w}) & =\frac{\vec{w} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{w} \cdot \vec{v}_{2}}{\overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}} \vec{v}_{2} \\
& =\frac{3}{2} \vec{v}_{1}+\frac{1}{2} \overrightarrow{v_{2}}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \\
\Rightarrow \operatorname{pap}_{w}(\vec{w}) & =\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right] \text { and }\left|\left|\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]\right|=1\right.
\end{aligned}
$$

4. Which of the following functions is the general solution of the equation $y^{\prime}+5 y=0$?
(a) $e^{5 x}+C$
(b) $C \cdot e^{-5 x}$
(c) $5 C+e^{-x}$
(d) $e^{-5 x}-C$
(e) $e^{x}-5$

$$
\begin{aligned}
y^{\prime} & =-5 y \\
& \Rightarrow y=c \cdot e^{-5 x}
\end{aligned}
$$

5. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}+2 y=3 e^{x} \\
y(1)=0
\end{array}\right.
$$

(a) $(x-1) e^{x}$
(b) e^{x}
(c) x^{2}
(7) $e^{x}-e^{3-2 x}$
(e) $\left(3 e^{x}-3\right) / 2$

$$
\mu(x)=e^{2 x}
$$

$$
\text { So } y=e^{x}-e^{3-2 x}
$$

6. Consider the initial value problem

$$
\frac{d y}{d t}=2 y^{2}-4 y, \quad y(5)=1
$$

Which of the following describes the nature of the solution?
(a) $\lim _{t \rightarrow-\infty} y(t)=2 ; \quad \lim _{t \rightarrow \infty} y(t)=0$
(b) $\lim _{t \rightarrow-\infty} y(t)=2$;
(c) $\lim _{t \rightarrow-\infty} y(t)=0$;
(d) $\lim _{t \rightarrow-\infty} y(t)=-\infty$;
(e) $\quad \lim _{t \rightarrow-\infty} y(t)=0 ; \quad \lim _{t \rightarrow \infty} y(t)=-\infty$
$2 y^{2}-4 y=2 y(y-2)$
critical values

$$
y=0,2
$$

patio derivatives

7. The differential equation

$$
\frac{\partial y}{\partial t}+\frac{\partial y}{\partial x}=y+x+t
$$

is
(a) an equation of order 2
(b) a partial differential equation
(c) exact
(d) separable
(e) an ordinary differential equation
8. Consider the orthogonal basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ of \mathbb{R}^{3}, where

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] .
$$

Find the coordinate vector $[\vec{w}]_{\mathcal{B}}$ if $\vec{w}=\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]$.
(a) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}3 \\ 7 \\ -10\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
$\vec{w}=\frac{\vec{w} \cdot \hat{v}_{1}}{\hat{v}_{1} \cdot \hat{v}_{1}} \hat{v}_{1}+\frac{\vec{w}^{\prime} \cdot \hat{v}_{2}}{\overrightarrow{v_{2}} \cdot \hat{v}_{2}}+\frac{\overrightarrow{v_{2}} \cdot \overrightarrow{v_{3}}}{\overrightarrow{v_{3}} \cdot \hat{v}_{3}} \vec{v}_{3}$
$=\frac{3}{3} \hat{v}_{1}+\frac{2}{2} \hat{v}_{2}+\frac{-12}{6} \vec{v}_{3}-\vec{v}_{1}+\overrightarrow{v_{2}}-2 \overrightarrow{v_{3}}$

Part II: Partial credit questions (11 points each). Show your work.
9. Let $W=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$, where

$$
\vec{w}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right], \quad \vec{w}_{3}=\left[\begin{array}{c}
3 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

(a) Apply the Gram-Schmidt process to find an orthonormal basis for $W .\left\{\overrightarrow{u_{\mathbf{1}}}, \overrightarrow{u_{\mathbf{2}}}, \overrightarrow{u_{\mathbf{z}}}\right\}$ onthogond $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \quad \vec{v}_{1}=\overrightarrow{w_{1}} \Rightarrow \vec{u}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{l}
1 \\
i_{2} \\
i_{2}
\end{array}\right] \Rightarrow \overrightarrow{u_{3}}=\frac{1}{v_{6}}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]
\end{aligned}
$$

(b) Find the $Q R$ decomposition of the matrix A with columns $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}$.

$$
\begin{aligned}
& R=Q^{\top} A=\left[\begin{array}{ccc}
\sqrt{3} & \sqrt{3} & \sqrt{3} \\
0 & \sqrt{2} & \sqrt{2} \\
0 & 0 & \sqrt{6}
\end{array}\right]
\end{aligned}
$$

10. Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$.
(a) Find the least squares solution to the equation $A \vec{x}=\vec{b}$.

$$
\begin{aligned}
& A^{\top} A \vec{x}=A^{\top} \vec{b} \\
& {\left[\begin{array}{ll}
5 & 2 \\
2 & 5
\end{array}\right] \hat{x}=\left[\begin{array}{l}
5 \\
0
\end{array}\right]} \\
& \begin{aligned}
\hat{x}=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
5 \\
0
\end{array}\right] & =\frac{1}{21}\left[\begin{array}{c}
5-2 \\
-25
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
25 / 21 \\
-10 / 21
\end{array}\right]
\end{aligned}
\end{aligned}
$$

(b) Find the vector in the column space of A which is closest to \vec{b}.

$$
\begin{aligned}
\operatorname{pig}_{\text {CAA }}(\overrightarrow{5}) & =A \hat{x} \\
& =\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{c}
25 / 21 \\
-10 / 21
\end{array}\right] \\
& =\left[\begin{array}{l}
25 / 21 \\
40 / 21 \\
-20 / 21
\end{array}\right]
\end{aligned}
$$

11. Consider the differential equation

$$
(\underbrace{\left(3 x \sin (y)+2 e^{y}\right.}_{\text {e equation Is not exact. }}) d x+(\underbrace{x^{2} \cos (y)+x e^{y}}_{\mathbf{N}}) d y=0 .
$$

(a) Explain why the equation is not exact.

$$
M_{y}=3 x \cos (y)+2 e^{y} \neq N_{x}=2 x \cos y+e^{y}
$$

(b) Find an integrating factor μ which only depends on the variable x.

$$
\mu^{\prime}=\mu \cdot \frac{M_{y}-N_{x}}{N}=\mu \cdot \frac{x \cos y+e^{y}}{x^{2} \cos y+x e y}=\mu \cdot \frac{1}{x}
$$

So $\mu=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
(c) Determine the implicit solution which satisfies the initial condition $y(1)=0$.

$$
\begin{aligned}
& \begin{array}{l}
\text { new exact } \\
\text { equation: }
\end{array}(\underbrace{\left(3 x^{2} \sin y+2 x+y\right.}_{M}) d x+\left(x^{3} \cos y+x^{2} r^{y}\right) d y=0 \\
& f(x, y)=\int\left(3 x^{2} \sin y+2 x e^{y}\right) d x=x^{3} \sin y+x^{2} e^{y}+g(y) \\
& \frac{\partial y}{\partial y}=r y=x^{3} \cos y+x^{2} e^{y}+y^{\prime}(y)=x^{3} \cos y+x^{2} y \\
& \Rightarrow g^{\prime}(y)=0, \text { can tar } g(y)=0
\end{aligned}
$$

[implicit shr: $\left.\begin{array}{l}x^{3} \sin y+x^{2} e^{y}=c \\ x-1, y=0\end{array}\right\} \Rightarrow 0 t 1=c$ so $x^{3} \sin y+x^{2} e^{y}=1$
12. (a) Find the solution of the initial value problem

$$
\begin{aligned}
&\left\{\begin{array}{l}
\frac{d y}{d x+}+2 x y^{2}=0 \\
y(0)=-1
\end{array}\right. \\
& \begin{aligned}
\frac{d y}{d x}=-2 x y^{2}
\end{aligned} \Rightarrow \int \frac{d y}{-y^{2}}=\int 2 x d x \\
& \Rightarrow \frac{1}{y}=x^{2}+C \\
& x=0, y=-1 \Rightarrow c=-1 \\
& \| \frac{1}{y}=x^{2}-1
\end{aligned}
$$

(b) Find the maximal interval on which the solution in (a) is defined.
want inturd I containing $x_{0}=0$ and avoiding $x= \pm 1$

So $I=(-1,1)$

