Math 20580	Name:	
Midterm 3	Instructor:	
November 14, 2023	Section:	
	-	

Calculators are NOT allowed. Do not remove this answer page – you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

9.			
10.			
11.			
12.			

Total.

Part I: Multiple choice questions (7 points each)

1. Find the orthogonal projection of the vector $\vec{v} = \begin{bmatrix} 3\\1\\-2 \end{bmatrix}$ onto the vector $\vec{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

(a)
$$\begin{bmatrix} 3/7\\1/7\\-2/7 \end{bmatrix}$$
 (b) $\vec{0}$ **(b)** $\vec{0}$ **(c)** $\begin{bmatrix} 2/3\\2/3\\2/3 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\0\\-3 \end{bmatrix}$ (e) $\begin{bmatrix} 3\\3\\3 \end{bmatrix}$

$$\frac{\vec{v}\cdot\vec{u}}{\vec{u}\cdot\vec{u}}\vec{u} = \frac{2}{3}\vec{u} = \begin{bmatrix} 2/3\\ 2/3\\ 2/3 \end{bmatrix}$$

2. If A is a 4×6 matrix of rank 2, what is the dimension of the orthogonal complement of the row space of A^T ?

(a) 1 (b)? (c) 3 (d) 4 (e) 5
Row
$$(A^{T})^{\perp} = nwl (A^{T})$$

AT has 4 columns $2 = nwllity (A^{T})$
Monk $(A^{T}) = 2$ $3 = nwllity (A^{T})$
 $= 4-2$
 $= 2$

3. Find the distance between
$$\vec{w} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
 and the subspace $W = \text{Span}\left\{\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}\right\}$.
(a) 1 (b) $\sqrt{3}$ (c) 2 (d) $\sqrt{2}$ (e) $\sqrt{6}$ [1]
 $\vec{v}_1 \quad \vec{v}_2$
 $\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_2$

$$= \sum_{i=1}^{n} p^{i} p^{i} (\vec{v}) = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0$$

4. Which of the following functions is the general solution of the equation y' + 5y = 0?

(a)
$$e^{5x} + C$$
 (b) $C \cdot e^{-5x}$ (c) $5C + e^{-x}$ (d) $e^{-5x} - C$ (e) $e^x - 5$

$$5' = -5g$$

5. Find the solution of the initial value problem

$$\begin{cases} y' + 2y = 3e^{x}, \\ y(1) = 0 \end{cases}$$
(a) $(x - 1)e^{x}$ (b) e^{x} (c) x^{2} (c) $e^{x} - e^{3-2x}$ (e) $(3e^{x} - 3)/2$

$$P(x) :e^{2x}, \\ y = \int \frac{e^{1x} \cdot 3e^{x} dx}{e^{2x}} = \frac{e^{3x} + c}{e^{2x}} \int = 5 \quad c = -e^{3x}$$

$$y(1) = e^{3x}, \quad y = e^{x} - e^{3-2x}$$

6. Consider the initial value problem

$$\frac{dy}{dt} = 2y^2 - 4y, \qquad y(5) = 1.$$

Which of the following describes the nature of the solution?

7. The differential equation

is

- (a) an equation of order 2
- (d) separable

(c) exact (e) an ordinary differential equation

8. Consider the orthogonal basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ of \mathbb{R}^3 , where

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}.$$

Find the coordinate vector $[\vec{w}]_{\mathcal{B}}$ if $\vec{w} = \begin{bmatrix} 0\\ -2\\ 5 \end{bmatrix}$.

(a) $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 3\\7\\-10 \end{bmatrix}$ (c) $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ (d) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ $\bigcirc \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$

$$\vec{W} = \frac{\vec{v}_1 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \cdot \vec{v}_1 + \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_1} \cdot \vec{v}_2 + \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_1} \cdot \vec{v}_2 + \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_1} \cdot \vec{v}_2 + \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \cdot \vec{v}_1 + \frac{\vec{v}_2 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \cdot \vec{v}_2 + \frac{\vec{v}_1 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \cdot \vec{v}_2 + \vec{v}_2 \cdot \vec{v}_2$$

Part II: Partial credit questions (11 points each). Show your work.

9. Let $W = \text{Span}\{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$, where

$$\vec{w}_1 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 2\\0\\0\\1 \end{bmatrix}, \quad \vec{w}_3 = \begin{bmatrix} 3\\0\\1\\-1 \end{bmatrix}.$$

(a) Apply the Gram-Schmidt process to find an orthonormal basis for W. $(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3})$ on the global $(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3})$ $\vec{v}_{1} = \vec{w}_{1} =)$ $\vec{u}_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} \\ \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \vec{v$

$$\begin{split} \vec{v}_{3} = \vec{w}_{3} - \vec{v}_{3} \cdot \vec{v}_{1} \quad \vec{v}_{1} - \vec{w}_{3} \cdot \vec{v}_{2} \quad \vec{v}_{2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \\ = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad \vec{v}_{2} \cdot \vec{v}_{1} \quad \vec{v}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \end{split}$$

(b) Find the QR decomposition of the matrix A with columns $\vec{w}_1, \vec{w}_2, \vec{w}_3$.

From (a),
$$Q = \begin{bmatrix} 1/V_3 & 1/V_2 & 1/V_2 \\ 1/V_3 & -1/V_2 & 1/V_2 \\ 1/V_3 & 0 & -2/V_6 \end{bmatrix}$$

 $R = Q^T A = \begin{bmatrix} V_3 & V_3 & V_3 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & 0 & V_6 \end{bmatrix}$

10. Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$.
(a) Find the least squares solution to the equation $A\vec{x} = \vec{b}$.
 $\vec{A}^{T}\vec{A} \vec{x} = \vec{A}^{T}\vec{B}$
 $\begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix} \vec{x} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$
 $\hat{\chi} = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}^{T} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \frac{1}{21} \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 25/21 \\ -10/21 \end{bmatrix}$

(b) Find the vector in the column space of A which is closest to \vec{b} .

$$p^{N} \dot{g}_{UA}(5) = A \hat{x}$$

$$= \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 25/21 \\ -10/21 \end{bmatrix}$$

$$= \begin{bmatrix} 25/21 \\ 40/21 \\ -20/21 \end{bmatrix}$$

11. Consider the differential equation

$$(3x \sin(y) + 2e^y) dx + (x^2 \cos(y) + xe^y) dy = 0.$$

(a) Explain why the equation is not exact.

(b) Find an integrating factor μ which only depends on the variable x.

$$\mu' = \mu \cdot \frac{M_{y} \cdot N_{x}}{N} = \mu \cdot \frac{x \cdot cs \cdot y + e^{y}}{x^{2} \cdot cs \cdot y + x \cdot e^{y}} = \mu \cdot \frac{1}{x}$$

So $\mu = e^{\int \frac{1}{x} dx} \cdot \frac{4x}{x} = \frac{4x}{x}$

(c) Determine the implicit solution which satisfies the initial condition y(1) = 0.

12. (a) Find the solution of the initial value problem

$$\begin{cases} \frac{dy}{dx} + 2xy^2 = 0\\ y(0) = -1 \end{cases}$$

(b) Find the maximal interval on which the solution in (a) is defined.

Want interval I critaining
$$x_0 = 0$$

and avoiding $x = \pm 1$
 $\xrightarrow{x \quad 0 \quad x}$
 $-1 \quad 0 \quad 1$
So $T = (-1, 1)$