Math 20580
Final Exam
December 13, 2023

Name:	
Instructor:	
Section:	

Calculators are NOT allowed. You will be allowed 2 hours to do the test.

There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

- 1. Let W be the column space of a 23×2023 matrix of rank 3. What is the dimension of W^{\perp} (the orthogonal complement of W)?
 - (a) 3

- (e) 2023

a) 3 (c) 23 (d) 2020
W Shlspace of R²³ of direction 3

2. Let M be the following matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Which of the following are eigenvalues of M?

I. 0 II. 1 III. 2

(a) I, II, and IV only

- (b) I, II, and III only
- (c) II, III, and IV only

- (d) I and IV only
- (e) II and IV only

IV. 3

ignvalues 1=0

3. Consider the bases $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ -10 \end{bmatrix} \right\}$ for \mathbb{R}^2 .

Find $\mathcal{P}_{\mathcal{C}\leftarrow\mathcal{B}}$, the change of coordinate matrix from \mathcal{B} to \mathcal{C} .

(a)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1/2 & 1 \\ 0 & 1 \end{bmatrix}$ $\bigcirc \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & -4 & : & 2 & 1 \\ 3 & -10 & : & 4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & : & 2 & 1 \\ 0 & 2 & : & -2 & 0 \end{bmatrix}$$

4. Describe the implicit solution of the exact equation

$$(e^x \sin(y) + 2y)dx + (2x + e^x \cos(y))dy = 0.$$

(a)
$$e^x \sin(y) = x^2 + y^2 + C$$

(b)
$$e^x \sin(y) + 2xy + g(y)$$

(a)
$$e^x \sin(y) = x^2 + y^2 + C$$
 (b) $e^x \sin(y) + 2xy + g(y)$ (c) $2xy + e^x \sin(y) = C$

(d)
$$y = \frac{e^x + x^2}{\sin(y)} + C$$

(e)
$$e^x \tan(y) = C$$

$$\frac{\partial J}{\partial y} = e^{\times} \cos y + 2 \times + 3^{\prime}(y) = 2 \times + e^{\times} \omega y$$

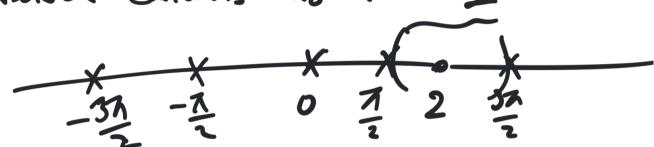
5. Describe the largest interval where a solution for the following initial value problem is guaranteed to exist:

$$\begin{cases} (\cos x)y'' + y' + (\ln|x|)y = x^2 \\ y(2) = 1, \ y'(2) = -1 \end{cases}$$

(a) $(0,\pi)$ (b) $(-\infty,\infty)$ (c) $(-\pi/2,\pi/2)$ (d) $(0,\infty)$ (e) $(\pi/2,3\pi/2)$

ln |x | continuous so x =0

Interval cutains xo=2 I



- 6. Let \mathcal{P}_2 be the vector space of polynomials of degree at most 2, and consider its basis $\mathcal{B} = \{1, 2-t, (2-t)^2\}$. The coordinate vector of $3t^2 8t + 6$ relative to the basis \mathcal{B} is:
 - (a) $\begin{bmatrix} 1\\2\\4 \end{bmatrix}$ (b) $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$ (c) $\begin{bmatrix} 3\\-8\\6 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\-4\\3 \end{bmatrix}$ (e) $\begin{bmatrix} 1\\1\\3 \end{bmatrix}$

$$\begin{bmatrix}
1 & 2 & 4 & . & 67 \\
0 & -1 & -4 & . & -8 \\
0 & 0 & 1 & . & 3
\end{bmatrix}$$

$$\begin{bmatrix}
-c_2 - 4c_5 = -8 = 3 \\
c_3 = 3
\end{bmatrix}$$

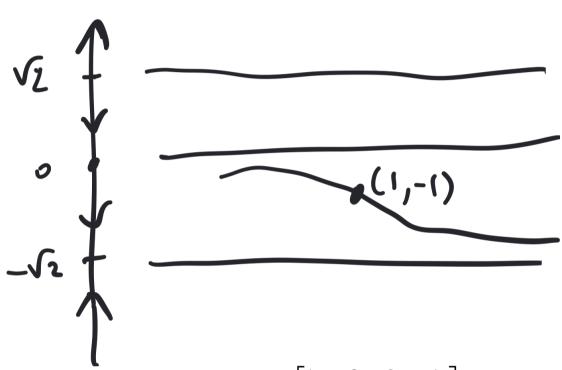
C1+2(2+4c3=6

7. Consider the solution y(x) of the autonomous equation

$$\frac{dy}{dx} = y^2 \cdot (y^2 - 2)$$

satisfying the initial condition y(1) = -1. Compute $\lim_{x \to \infty} y(x)$.

- (a) $\sqrt{2}$
- (b) $-\infty$
- (c) $-\sqrt{2}$
- (d) 0
- (e) ∞



- 8. Given the matrix $A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$, determine its nullity and rank.
 - (a) $\operatorname{nullity}(A) = 1, \operatorname{rank}(A) = 3$
- (b) $\operatorname{nullity}(A) = 2, \operatorname{rank}(A) = 3$
- (c) $\operatorname{nullity}(A) = 0, \operatorname{rank}(A) = 5$
- (d) $\operatorname{nullity}(A) = 1, \operatorname{rank}(A) = 4$
- (e) $\operatorname{nullity}(A) = 2, \operatorname{rank}(A) = 2$

9. The matrix
$$A = \begin{bmatrix} 1 & -2 & -1 & 2 \\ 0 & 1 & 2 & 3 \\ 2 & -3 & -1 & 9 \end{bmatrix}$$
 has reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 14 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -2 \end{bmatrix}$.

For which value of the parameter t is the vector $\begin{bmatrix} 1 & -1 & t & 0 \end{bmatrix}$ in the row space of A?

(a) 2 (b)
$$\frac{7}{2}$$
 (c) 0 (d) -7 (e) -2

$$X_{1} \cdot \begin{bmatrix} 1 & 0 & 0 & 14 \end{bmatrix} + X_{2} \begin{bmatrix} 0 & 1 & 0 & 7 \end{bmatrix} + X_{3} \begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} X_{1} & X_{2} & X_{3} & 14X_{1} + 7X_{2} - 2X_{3} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & t & 0 \end{bmatrix}$$

implies
$$x_1=1$$
 $|4x_1+7x_2-2x_3=0$ $x_2=-1$ $x_3=t$ $x_4=1$ $x_5=1$ $x_5=1$

[a)
$$0$$
 (b) $-1/2$ (c) -2 (d) $3/2$ (e) 2

$$b_{21} = \frac{C_{12}}{\Delta t A}$$

$$c_{12} = \left| \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right| = 0$$

$$= \frac{O}{\Delta t A} = 0$$

11. Find the solution of the initial value problem

$$\begin{cases} y'' - 6y' + 9y = 0, \\ y(0) = 0, \ y'(0) = 2. \end{cases}$$

(a)
$$2e^{-3t} - 2$$
 (b) $e^{3t} - e^{-3t}$ (c) $2te^{3t}$ (d) $-6e^{3t} + 3$ (e) $-2e^t + e^{-2t}$

$$y_1 - 6y_1 + y_2 = 0$$
 double most $y_1 = 0$ $y_2 = 0$ $y_3 = 0$ $y_4 = 0$ $y_5 = 0$ $y_6 = 0$

12. Find the Wronskian $W(f_1, f_2, f_3)$ where $f_1(x) = x$, $f_2(x) = x^2$ and $f_3(x) = 1/x$.

- (a) x^2 (b) 0 (c) $\frac{x^2 + x^3 + 1}{x}$ (d) $\frac{x^2}{2} + \frac{x^3}{3} + \ln(x)$

$$\frac{6}{x}$$

$$= \times \cdot (4x^{-2} + 2x^{-2}) - (2x^{-2} - 2x^{-1})$$

- 13. Consider the differential equation $y'' + 4y = 4\sin(2x)$. Use the method of undetermined coefficients to find a particular solution.
 - (a) Ae^{4x}
- (c) $e^{2x} \sin(2x)$
- (d) $-2\cos(2x)$

(e) $x \sin(2x) + \cos(2x)$

y" +44=0 → m2+4=0 Mosts m= ±2i -1 FSS= { cos(20), sin(20)} , Y=x (Aus 2x+Bsin2x) Y = (A +2Bx) cos2x + (B-2Ax) sin2x Y"= (40-4Ax) ws2x + (-44-4Bx) sin2x => 4B 452x -44 mi2x = 4 mi2x => [3=0, A=-1] So Y= -x cos(2x)

14. Find the solution of the initial value problem

$$\begin{cases} y' = \frac{2x}{y + x^2y} \\ y(0) = 1 \end{cases}$$

- (b) $\sqrt{2\ln(x^2+1)+1}$ (c) $(x-1)^2$ (d) $\ln(x^2+1)+1$ (a) $x^2 \ln(x) + 1$

(e) there is no solution

$$\frac{dy}{dx} = \frac{2x}{y(x^{2}+1)} (=) \int y dy = \int \frac{2x}{1+x^{2}} dx$$

$$= \begin{cases} \frac{1}{2} = C \\ \frac{1}{2} = C \end{cases} (=) \int y dy = \int \frac{2x}{1+x^{2}} dx$$

$$= \begin{cases} \frac{1}{2} = C \\ \frac{1}{2} = C \end{cases} (=) \begin{cases} \frac{1}{2} = A(1+x^{2}) + C \\ \frac{1}{2} = C \end{cases}$$

=> y= 26(1+x)+2.5 =26(11x2)+1

15. Which of the following matrices is similar to $A = \begin{bmatrix} -3 & 41 \\ -1 & 7 \end{bmatrix}$.

(a)
$$\begin{bmatrix} -1 & -3 \\ 7 & 41 \end{bmatrix}$$
 (b) $\begin{bmatrix} 20 & 21 \\ -4 & -7 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 4 \\ -4 & 2 \end{bmatrix}$ (e) $\begin{bmatrix} -3 & 0 \\ 0 & 7 \end{bmatrix}$

(b)
$$\begin{bmatrix} 20 & 21 \\ -4 & -7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ -4 & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} -3 & 0 \\ 0 & 7 \end{bmatrix}$$

right values:
$$dit \begin{bmatrix} -3-1 & 41 \\ -1 & 2-1 \end{bmatrix} = \lambda^2 - 4\lambda + 20$$

 $= (\lambda - 2)^2 + 16 = 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$

16. Find the matrix R in the QR decomposition of $A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{bmatrix}$, provided that

$$Q = \begin{bmatrix} 0 & -1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

(a)
$$\begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{8} \end{bmatrix}$$

(a)
$$\begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{8} \end{bmatrix}$$
 (b)
$$\begin{bmatrix} \sqrt{2} & -\sqrt{2} & \sqrt{2} \\ 0 & 1 & -2 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

(d)
$$\begin{bmatrix} \sqrt{2} & -\sqrt{3} & -1 \\ 0 & \sqrt{3} & \sqrt{2} \\ 0 & 0 & \sqrt{8} \end{bmatrix}$$
 (e) none of the above

17. Which of the following describes the least-squares solutions of the equation $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 5 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

(a) $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$ only

- (b) $\begin{bmatrix} 1/2 \\ -3 \end{bmatrix}$ only $\begin{bmatrix} 5/6 \\ 1/3 \end{bmatrix}$ only
- (d) infinitely many solutions
- (e) no solutions

$$A^{T}A = \begin{bmatrix} 6 & 6 \\ 6 & 27 \end{bmatrix}$$

18. Which formula describes the general solution of the differential equation

$$ty'' - (1+t)y' + y = 0, \ t > 0$$

given the fact that $y_1(t) = e^t$ is a solution of this equation.

- (a) $c_1 + c_2 e^t$ (b) $c_1 e^t + c_2 t e^t$
- (c) $c_1 e^t + c_2 \ln(t+1)$

- (d) $c_1 e^t + c_2 e^{-t}$ (e) $c_1 e^t + c_2 (t+1)$

$$5'' - \frac{1+1}{4}y^{1} + \frac{1}{4}y = 0$$
 $y_{1} = e^{4} \int \frac{e^{3\frac{1+1}{4}}}{e^{2t}} dt$

$$=2y_{1}=e^{t}\int \frac{e^{ht+t}}{e^{it}}dt=e^{t}.\int te^{-t}dt=e^{t}.(-te^{-t}-e^{-t})$$

$$=2-t-1=(-1)\cdot(t+1)$$

19. Consider the differential equation $x^2y'' - 2y = 3x^2 - 1$. The functions

$$y_1 = x^2 \quad \text{and} \quad y_2 = x^{-1}$$

form a fundamental set of solutions for the associated homogeneous equation. Which of the following describes a particular solution of the non-homogeneous equation?

(a)
$$x^2 - \frac{1}{x}$$

(b)
$$c_1 x^2 + c_2 x^{-1}$$

$$\int_{0}^{\infty} x^{2} \ln(x) + \frac{1}{2}$$

(d)
$$\frac{x^2}{3x^2-1}$$

(e)
$$\frac{x^3}{3} + \ln(x)$$

$$W(9, 42) = |x^2 \times | = -3$$

$$5^4 - \frac{2}{x^2}y = \frac{3-x^2}{4(x)}$$

(a)
$$x^2 - \frac{1}{x}$$
 (b) $c_1 x^2 + c_2 x^{-1}$ (c) $x^2 \ln(x) + \frac{1}{2}$ (d) $\frac{x^2}{3x^2 - 1}$

$$u_2 = \int \frac{x^2(3-x^2)dx}{-3} = \frac{x-x^3}{3}$$

$$(4+x^2)\frac{dy}{dx} + 2xy = 4x.$$

$$2x^2 + C \over 4 + x^2$$

(a)
$$\frac{2x^2 + C}{4 + x^2}$$
 (b) $\ln(4 + x^2) + C$ (c) $\frac{C}{4 + x^2}$ (d) $\frac{2x}{4 + x^2} + C$

(c)
$$\frac{C}{4+x^2}$$

(d)
$$\frac{2x}{4+x^2} + C$$

(e) cannot be found explicitly using methods we learned

$$\frac{dy}{dx} + \frac{2x}{4+x^2} \cdot y = \frac{4x}{4+x^2}$$

$$y = \frac{\int (4+x^2) \cdot \frac{4x}{4+x^2} dx}{4+x^2} = \frac{2x^2+6}{4+x^2}$$