\qquad

1. (6pts) Let A be an $n \times n$ matrix satisfying $A^{T} A=I$. Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^{n} such that $\mathbf{u} \cdot \mathbf{v}=4$. Find $(A \mathbf{u}) \cdot(A \mathbf{v})$.
(a) $1 / 4$
(b) $-1 / 4$
(c) 0
(d) -4
(•) 4

Solution:

$A^{T} A=I$ means A is unitary so $(A \mathbf{u}) \cdot(A \mathbf{v})=\mathbf{u} \cdot \mathbf{v}=4$.
2.(6pts) Let $W=$ Span $\left\{\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right]\right\} .{\text { Compute } \operatorname{proj}_{W}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] .}_{\begin{array}{lll}\text { (a) } \frac{1}{2}\left[\begin{array}{r}-1 \\ 1 \\ -1 \\ 1\end{array}\right] & \text { (b) } \frac{1}{2}\left[\begin{array}{r}-3 \\ -1 \\ 0 \\ 0 \\ -2\end{array}\right] & \text { (d) }\left[\begin{array}{r}-1 \\ -1 \\ 1 \\ 1\end{array}\right]\end{array}} \begin{array}{ll}\text { (e) } \frac{1}{2}\left[\begin{array}{r}1 \\ 3 \\ -3 \\ -1\end{array}\right]\end{array}$

Solution:

Note that the vectors in W are orthogonal so

$$
\begin{gathered}
\operatorname{proj}_{W}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\frac{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]+\frac{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+\frac{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
1 \\
-1 \\
1 \\
-1 \\
-1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
-1 \\
-1
\end{array}\right]}= \\
\frac{-2}{4}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]+\frac{0}{4}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]+\frac{-4}{4}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
-3 \\
-1 \\
1 \\
3
\end{array}\right]
\end{gathered}
$$

3. (6pts) Classify the differential equation $\frac{d y}{d x}=\frac{\sin (x) y}{\cos (x)+y}$.
(a) $2 n d$ order
(b) autonomous
(c) separable
(-) exact
(e) linear

Solution:

It appears to be neither linear, separable or autonomous. It is first order, not second. We can write it as

$$
\sin (x) y d x+(-\cos (x)) d y=0
$$

But $\frac{\partial \sin (x) y}{\partial y}=\sin (x)$ and $\frac{\partial-\cos (x)}{\partial x}=\sin (x)$ so it is exact.
4. $(6 \mathrm{pts})$ Solve the differential equation $y^{\prime}+3 \sqrt{t} y=\sqrt{t}$.
(a) $y=2 t^{3 / 2}+C$
(b) $y=C t^{-3 / 2}$
(c) $y=\frac{1}{3}+C$
(•) $y=\frac{1}{3}+C e^{-2 t \sqrt{t}}$
(e) $y=C \sqrt{t} e^{2 t \sqrt{t}}$

Solution:

Equation is linear 1st order in standard form. $\int 3 \sqrt{t} d t=3 \frac{t^{3 / 2}}{3 / 2}+C$ so $\mu=e^{2 t^{3 / 2}}$ is a choice of integrating factor. Need to do $\int \sqrt{t} e^{2 t^{3 / 2}} d t$. Substitute $u=2 t^{3 / 2}$ so $d u=3 \sqrt{t} d t$ so $\int \sqrt{t} e^{2 t^{3 / 2}} d t=\frac{1}{3} \int e^{u} d u=\frac{e^{u}}{3}+C=\frac{e^{2 t^{3 / 2}}}{3}+C$ and the solution is $y=\frac{\frac{e^{2 t^{3 / 2}}}{3}+C}{e^{2 t^{3 / 2}}}$.
\qquad
5. (6pts) Let $\phi(x)$ be a solution to $\frac{d y}{d x}=\frac{1+y^{2}}{x^{2}}$ that satisfies $\phi(1)=0$. Find $\phi(2)$.
(a) $\frac{1}{1-\tan (1 / 2)}$
(-) $\tan (1 / 2)$
(c) $\frac{1}{1-\tan ^{-1}(2)}$
(d) $\tan ^{-1}(2)$
(e) $\tan (2)$

Solution:

Equation separates as $\frac{d y}{1+y^{2}}=\frac{d x}{x^{2}}$ so $\arctan (y)=-x^{-1}+C$. The initial condition is $y(1)=0$ so $\arctan (0)=-1+C$ so $C=1$ and the solution is $\arctan (y)=\frac{x-1}{x}$. Hence $y=\tan \left(\frac{x-1}{x}\right)$ and $y(2)=\tan (1 / 2)$.
6. (6pts) Find the general solution to $3 y^{\prime \prime}+y^{\prime}-2 y=0$.
(a) $y=c_{1} e^{-t}+c_{2} e^{3 t / 2}$
(b) $y=c_{1} e^{-t / 3}+c_{2} e^{t / 2}$
(c) $y=c_{1} e^{t / 2}+c_{2} e^{-3 t / 2}$
(d) $y=c_{1} e^{t / 2}+c_{2} e^{-2 t / 3}$
(-) $y=c_{1} e^{-t}+c_{2} e^{2 t / 3}$

Solution:

This equation is 2 nd order linear with constant coefficients so $e^{r t}$ is a solution whenever $3 r^{2}+r-2=0$ or $(3 r-2)(r+1)=0$ so the roots are -1 and $\frac{2}{3}$. The general solution is $c_{1} e^{-t}+c_{2} e^{\frac{2 t}{3}}$
\qquad
7.(6pts) Determine an interval where the solution to the initial value problem is guaranteed to exist.

$$
\left(t^{2}-4\right) y^{\prime}=\sqrt{3-t} y+\ln (1+t), \quad y(0)=0
$$

(a) $-1<t<3$
(b) $-1<t$
(•) $-1<t<2$
(d) $t<3$
(e) $-2<t$

Solution:

The equation is linear and the standard form is

$$
y^{\prime}+\frac{-\sqrt{3-t}}{t^{2}-4} y=\frac{\ln (1+t)}{t^{2}-4}, \quad y(0)=0
$$

The problem asks for the biggest open interval containing 0 over which the two functions of t are continuous. We need $t \leqslant 3$ for the square root; $t>-1$ for the \log function; and $t \neq 2$, -2 for the division by $t^{2}-4$. Hence $-1<t<2$.
8. (6pts) Find all the stable equilibrium solutions of the autonomous system

$$
\frac{d y}{d t}=3 y-4 y^{2}+y^{3}
$$

(-) $y=1$
(b) $y=0, y=-4$
(c) $y=0, y=3$
(d) $y=1, y=3, y=-4$
(e) $y=3$

Solution:

The equilibria occur at solutions to $3 y-4 y^{2}+y^{3}=0$ or $y\left(y^{2}-4 y+3\right)=y(y-1)(y-3)$ or $y=0,1$ and 3. For a stable equilibrium at $y_{0}, \frac{d y}{d t}>0$ changes sign from positive to negative as y crosses y_{0}.

Crossing $0, y(y-1)(y-3)$ changes from negative to positive so this equilibrium is unstable. The same thing happens at 3 , but crossing 1 two terms are negative for y a bit less than 1 , and only one term is negative if y is a bit bigger than 1 so 1 is stable.
\qquad
9.(6pts) A large tank contains 500 gallons of a water/sugar mixture. Liquid is entering the tank at a rate of 15 gallons/minute and contains 1 pound of sugar per gallon. The mixture is kept well stirred and drains off the tank at a rate of 10 gallons/minute.

If the tank initially has 100 pounds of sugar, determine a differential equation satisfied by $s(t)$, the amount of sugar in pounds in the tank at time t (at least until the tank is full).
(a) $\frac{d s}{d t}=30=\frac{s}{500+20 t}$
(•) $\frac{d s}{d t}=15=\frac{2 s}{100+t}$
(c) $\frac{d s}{d t}=500=\frac{s}{20}$
(d) $\frac{d s}{d t}=15=\frac{s}{50}$
(e) $\frac{d s}{d t}=15=\frac{s}{500+20 t}$

Solution:

$\frac{d}{d t}$ measures the change in the amount of sugar. If time is measured from the beginning of the process, $s(0)-100$. The amount of sugar is changing because of two things. Liquid is entering at a constant rate if 15 gals $/ \mathrm{min}$ which adds $1 \mathrm{lbs} / \mathrm{gal} \times 15 \mathrm{gals} / \mathrm{min}-15 \mathrm{lbs} / \mathrm{min}$. of sugar to the tank.

Liquid is draining out at a rate of 10 gals $/ \mathrm{min}$ so sugar is leaving at a rate of $10 \mathrm{gals} / \mathrm{min}$ $\times s(t) / V(t)$ lbs/gal where $V(t)-500+5 t$ is the volume of the liquid in gallons. Hence sugar is leaving at a rate of $\frac{10 s(t)}{600+5 t} \mathrm{lbs} / \mathrm{min}$.

Hence $\frac{d s}{d t}=15=\frac{10 s}{500+5 t}=15=\frac{2 s}{100+t^{2}}$
\qquad
10.(14pts) Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & -1 & -1\end{array}\right]$.
(a) (10pts) Use the Gram-Schmidt process to find an orthogonal basis for $\operatorname{col}(A)$.
(b) (4pts) Use the result of (a) to find the Q in the $Q R$-decomposition of $A, A=Q R$, where Q is an orthogonal matrix and R is an upper-triangular matrix. DO NOT find R.

Solution:

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence } Q=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt{2} & 1 & \sqrt{3} \\
\sqrt{2} & 1 & -\sqrt{3} \\
\sqrt{2} & -2 & 0
\end{array}\right] \text {. }
\end{aligned}
$$

You were told not to find R but if you had been required to find it, proceed as follows. Since $R=Q^{T} A$,

$$
R=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt{2} & \sqrt{2} & \sqrt{2} \\
1 & 1 & -2 \\
\sqrt{3} & -\sqrt{3} & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 2 & 1 \\
1 & -1 & -1
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
3 \sqrt{2} & 3 \sqrt{2} & 3 \sqrt{2} \\
0 & 6 & 6 \\
0 & 0 & 2 \sqrt{3}
\end{array}\right]
$$

Check

$$
\frac{1}{6}\left[\begin{array}{rrr}
\sqrt{2} & 1 & \sqrt{3} \\
\sqrt{2} & 1 & -\sqrt{3} \\
\sqrt{2} & -2 & 0
\end{array}\right]\left[\begin{array}{rrr}
3 \sqrt{2} & 3 \sqrt{2} & 3 \sqrt{2} \\
0 & 6 & 6 \\
0 & 0 & 2 \sqrt{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 2 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

\qquad
11. (14pts) If $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 5\end{array}\right]$ find the least squares solution to $A \mathbf{x}=\mathbf{b}$.

Solution:
$A^{T}=\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 1 & 0 & 1 & 1\end{array}\right]$ so $A^{T} A=\left[\begin{array}{ll}6 & 3 \\ 3 & 3\end{array}\right]$ and $A^{T} \mathbf{b}=\left[\begin{array}{l}6 \\ 9\end{array}\right]$. Hence the least squares solution is the vector $\hat{\mathbf{x}}$ which satisfies

$$
\left[\begin{array}{ll}
6 & 3 \\
3 & 3
\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{l}
6 \\
9
\end{array}\right]
$$

$\left[\begin{array}{ll|l}6 & 3 & 6 \\ 3 & 3 & 9\end{array}\right]\left[\begin{array}{ll|l}6 & 3 & 6 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{ll|l}1 & 1 & 3 \\ 6 & 3 & 6\end{array}\right]\left[\begin{array}{rr|r}1 & 1 & 3 \\ 0 & -3 & -12\end{array}\right]\left[\begin{array}{ll|l}1 & 1 & 3 \\ 0 & 1 & 4\end{array}\right]$
$\left[\begin{array}{ll|r}1 & 0 & -1 \\ 0 & 1 & 4\end{array}\right]$
so $\left[\begin{array}{r}-1 \\ 4\end{array}\right]$ is the least squares solution.
\qquad
12. (14pts) Determine an explicit solution to $\left(e^{x}+e^{-y}\right) d x+e^{x} d y=0$ that satisfies $y(0)=0$.
(a) (7pts) Find an integrating factor.
(b) (7pts) Give an implicit solution to the original initial value problem.

Solution:

$M=e^{x}+e^{-y}, N=e^{x}$ so $M_{y}-N_{x}=-e^{-y}-e^{x}$ so $\frac{M_{y}-N_{x}}{M}=-1$ so $-\frac{d \mu}{d y}=-\mu$ or $\mu=e^{y}$.
Check $\left(e^{x+y}+1\right) d x+e^{x+y} d y=0$ and $\frac{\partial e^{x+y}+1}{\partial y}=e^{x+y}=\frac{\partial e^{x+y}}{\partial x}$ so $\left(e^{x+y}+1\right) d x+e^{x+y} d y=$ 0 is exact.

$$
\frac{\partial \psi}{\partial x}=e^{x+y}+1 \text { so } \psi=e^{x+y}+x+g(y)
$$

$\frac{\partial \psi}{\partial y}=e^{x+y}+g^{\prime}(y)=e^{x+y}$ so $g(y)$ is a constant and the solutions are the level curves of $\psi=e^{x+y}+x$. The curve passes through $(0,0)$ so $e^{x+y}+x=1$ is the implicit form of the solution.

Explicitly, $e^{x+y}=1-x, x+y=\ln (1-x)$ so $y=\ln (1-x)-x$.

