Math 20580
Midterm 3
April 20, 2023
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam.
You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

$$
\begin{aligned}
& \text { 4. } a \operatorname{b} \boxed{c} \begin{array}{llll}
d & e
\end{array}
\end{aligned}
$$

> 7. $\mathrm{a} \sqrt[\mathrm{b}]{\mathrm{c}} \mathrm{d}, \mathrm{e}$
> 8. $a, b \in c|c| c$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Which of the following is an eigenvalue of $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ corresponding to the eigenvector $\vec{x}=\left[\begin{array}{l}i \\ 1\end{array}\right] ?$
(a) $\lambda=1+3 i$
(b) $\lambda=i$
(c) $\lambda=1+i$
(d) $\lambda=1$
(e) $\lambda=-1$
2. Let $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: x+y-z=0\right\}$. What is the dimension of the orthogonal complement W^{\perp} of W ?
(a) 3
(b) 0
(c) 2
(d) 1
(e) None
3. Consider the orthogonal vectors $\vec{w}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\vec{w}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. The distance from the vector $\vec{x}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ to $W=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$ is:
(a) $\sqrt{6}$
(b) 1
(c) $\sqrt{2}$
(d) 0
(e) $\sqrt{3}$
4. The matrix $A=\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 0 & 1\end{array}\right]$ factors as $A=Q R$, where $Q=\left[\begin{array}{cc}1 / \sqrt{2} & 2 / 3 \\ -1 / \sqrt{2} & 2 / 3 \\ 0 & 1 / 3\end{array}\right]$ and R is:
(a) $\left[\begin{array}{cc}1 / \sqrt{2} & 1 / 3 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}\sqrt{3} & 1 \\ 0 & -\sqrt{2}\end{array}\right]$
(e) $\left[\begin{array}{ll}2 / 3 & 1 / 3 \\ \sqrt{2} & \sqrt{2}\end{array}\right]$
5. Let $y(x)$ be the unique solution of the initial value problem

$$
\sqrt{4-x^{2}} y^{\prime \prime}+\frac{x}{x^{2}+1} y^{\prime}+5 y=\frac{1}{x^{2}-5 x+4}, \quad y(0)=1, y^{\prime}(0)=7
$$

What is the largest interval where $y(x)$ is defined?
(a) $x \geq 0$
(b) $-2 \leq x \leq 2$
(c) $-2<x<1$
(d) $-2<x<2$
(e) $x<2$
6. Find all stable critical values (also known as stable equilibrium solutions) for the autonomous system

$$
\frac{d y}{d x}=y^{2}(y-3)(y+2)
$$

(a) $y=3, y=0, y=-2$
(b) $y=-2$
(c) $y=3, y=0$
(d) $y=0$
(e) $y=3$
7. Solve the initial value problem

$$
\frac{d y}{d x}-\frac{3}{x} y=x^{6}, \quad y(1)=\frac{5}{4}
$$

(a) $y=\frac{x^{7}}{4}+x^{3}$
(b) $y=\frac{x^{7}}{4}+x$
(c) $y=\frac{x^{7}}{10}+\frac{23}{10} x^{-3}$
(d) $y=\frac{x^{10}}{7}+\frac{31}{28}$
(e) $y=\frac{x^{10}}{7}+x^{3}$
8. Which of the following is a solution to the initial value problem?

$$
\frac{d y}{d t}=\frac{t y^{2}}{1+t^{2}}, \quad y(0)=1
$$

(a) $\ln (y)=\frac{t^{3}}{3}$
(b) $\frac{y^{3}}{3}=\tan ^{-1}(t)+\frac{1}{3}$
(c) $y=\frac{1}{1-\frac{1}{2} \ln \left(1+t^{2}\right)}$
(d) $\ln (y)=\tan ^{-1}(t)$
(e) $y=\frac{1}{1-\tan ^{-1}(t)}$

Part II: Partial credit questions (11 points each). Show your work.
9. (a) Apply the Gram-Schmidt Process to construct an orthogonal basis for the subspace $V=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 4\end{array}\right]\right\}$ of \mathbb{R}^{4}.
(b) Find an orthonormal basis for V from the orthogonal basis found in part (a).
10. Let $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
(a) Find the least squares solution to the equation $A \vec{x}=\vec{b}$.
(b) Find the vector in the column space of A which is closest to \vec{b}.
11. Consider the differential equation $\left(e^{y}-\sin (x)\right) d x+\left(x e^{y}-\frac{3}{y}\right) d y=0$.
(a) Show that the equation is exact.
(b) Find the general implicit solution and express it in the form $f(x, y)=c$.
(c) Find the implicit solution that satisfies the initial condition $y(0)=e$.
12. Willy has a tank containing 10 gallons of mill which initially contains 1 pound of chocolate powder. The well-mixed chocolate milk in the tank is drained at a rate of 3 gallons per hour, and Willy pumps in chocolate milk with a concentration of 1 pound of chocolate powder per gallon at a rate of 3 gallons per hour.
(a) Set up an initial value problem for the amount $y(t)$ in pounds of chocolate powder in the tank after t hours.
(b) Solve the initial value problem to find an explicit formula for $y(t)$.

