Math 20580	Name:
Midterm 3	Instructor:
April 20, 2023	Section:
Calculators are NOT allowed.	Do not remove this answer page – you will return the whole exam.

You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

9.			
10.			
11.			
12.			
_			

Total.

Part I: Multiple choice questions (7 points each)

1. Which of the following is an eigenvalue of $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ corresponding to the eigenvector $\vec{x} = \begin{bmatrix} i \\ 1 \end{bmatrix}$? (a) $\lambda = 1 + 3i$ (b) $\lambda = i$ (c) $\lambda = 1 + i$ (d) $\lambda = 1$ (e) $\lambda = -1$

2. Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x + y - z = 0 \right\}$$
. What is the dimension of the orthogonal complement W^{\perp} of W ?

3. Consider the orthogonal vectors $\vec{w_1} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ and $\vec{w_2} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. The distance from the vector

$$\vec{x} = \begin{bmatrix} 1\\3\\-1 \end{bmatrix} \text{ to } W = \text{Span}\{\vec{w}_1, \vec{w}_2\} \text{ is:}$$
(a) $\sqrt{6}$ (b) 1 (c) $\sqrt{2}$ (d) 0 (e) $\sqrt{3}$

4. The matrix
$$A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$
 factors as $A = QR$, where $Q = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ -1/\sqrt{2} & 2/3 \\ 0 & 1/3 \end{bmatrix}$ and R is:
(a) $\begin{bmatrix} 1/\sqrt{2} & 1/3 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
(d) $\begin{bmatrix} \sqrt{3} & 1 \\ 0 & -\sqrt{2} \end{bmatrix}$ (e) $\begin{bmatrix} 2/3 & 1/3 \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$

5. Let y(x) be the unique solution of the initial value problem

$$\sqrt{4-x^2} y'' + \frac{x}{x^2+1} y' + 5y = \frac{1}{x^2-5x+4}, \quad y(0) = 1, \ y'(0) = 7.$$

What is the largest interval where y(x) is defined?

(a)
$$x \ge 0$$
 (b) $-2 \le x \le 2$ (c) $-2 < x < 1$ (d) $-2 < x < 2$ (e) $x < 2$

Find all stable critical values (also known as stable equilibrium solutions) for the autonomous system

$$\frac{dy}{dx} = y^2(y-3)(y+2).$$
(a) $y = 3, y = 0, y = -2$
(b) $y = -2$
(c) $y = 3, y = 0$
(d) $y = 0$
(e) $y = 3$

7. Solve the initial value problem

$$\frac{dy}{dx} - \frac{3}{x}y = x^{6}, \qquad y(1) = \frac{5}{4}.$$
(a) $y = \frac{x^{7}}{4} + x^{3}$
(b) $y = \frac{x^{7}}{4} + x$
(c) $y = \frac{x^{7}}{10} + \frac{23}{10}x^{-3}$
(d) $y = \frac{x^{10}}{7} + \frac{31}{28}$
(e) $y = \frac{x^{10}}{7} + x^{3}$

8. Which of the following is a solution to the initial value problem?

$$\frac{dy}{dt} = \frac{ty^2}{1+t^2}, \qquad y(0) = 1.$$
(a) $\ln(y) = \frac{t^3}{3}$
(b) $\frac{y^3}{3} = \tan^{-1}(t) + \frac{1}{3}$
(c) $y = \frac{1}{1-\frac{1}{2}\ln(1+t^2)}$
(d) $\ln(y) = \tan^{-1}(t)$
(e) $y = \frac{1}{1-\tan^{-1}(t)}$

Part II: Partial credit questions (11 points each). Show your work.

9. (a) Apply the Gram-Schmidt Process to construct an orthogonal basis for the subspace $(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix})$

$$V = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 1\\ 4 \end{bmatrix} \right\} \text{ of } \mathbb{R}^4.$$

(b) Find an orthonormal basis for V from the orthogonal basis found in part (a).

10. Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

(a) Find the least squares solution to the equation $A\vec{x} = \vec{b}$.

(b) Find the vector in the column space of A which is closest to \vec{b} .

- 11. Consider the differential equation $\left(e^y \sin(x)\right)dx + \left(xe^y \frac{3}{y}\right)dy = 0.$
 - (a) Show that the equation is exact.

(b) Find the general implicit solution and express it in the form f(x, y) = c.

(c) Find the implicit solution that satisfies the initial condition y(0) = e.

- 12. Willy has a tank containing 10 gallons of milk which initially contains 1 pound of chocolate powder. The well-mixed chocolate milk in the tank is drained at a rate of 3 gallons per hour, and Willy pumps in chocolate milk with a concentration of 1 pound of chocolate powder per gallon at a rate of 3 gallons per hour.
 - (a) Set up an initial value problem for the amount y(t) in pounds of chocolate powder in the tank after t hours.

(b) Solve the initial value problem to find an explicit formula for y(t).