Math 20580 Tutorial - Quiz 1

1. Determine whether the vector \mathbf{w} can be written as a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}$ and \mathbf{v}_{3}. If yes, find scalars a_{1}, a_{2}, a_{3} such that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{w}$.
$\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}3 \\ 4 \\ -9\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}3 \\ -7 \\ -4\end{array}\right]$.
Solution: To solve $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{w}$, row reduce to the corresponding augmented matrix

$$
\left[\begin{array}{ccc|c}
1 & -2 & 3 & 3 \\
0 & 1 & 4 & -7 \\
-3 & 6 & -9 & -4
\end{array}\right] \xrightarrow{R_{3}+3 R_{1}}\left[\begin{array}{ccc|c}
1 & -2 & 3 & 3 \\
0 & 1 & 4 & -7 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

By the third row, $0 a_{1}+0 a_{2}+0 a_{3}=5$, which is impossible. Thus \mathbf{w} cannot be written as a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}.
2. Determine the general solution to the system of equations below.

$$
\begin{aligned}
& 8 x_{1}+5 x_{2}=5 \\
& 2 x_{1}+x_{2}=3 .
\end{aligned}
$$

Solution: To solve the system of equations, set up an augmented matrix, and row reduce.

$$
\left[\begin{array}{lll}
8 & 5 & 5 \\
2 & 1 & 3
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{1}}\left[\begin{array}{lll}
2 & 1 & 3 \\
8 & 5 & 5
\end{array}\right] \xrightarrow{R_{2}-4 R_{1}}\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & 1 & -7
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc}
2 & 0 & 10 \\
0 & 1 & -7
\end{array}\right]
$$

From this, we see $x_{2}=-7$ and $x_{1}=5$.

