Math 20580 Tutorial – Quiz 1

1. Determine whether the vector \mathbf{w} can be written as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 . If yes, find scalars a_1, a_2, a_3 such that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{w}$.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2\\1\\6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3\\4\\-9 \end{bmatrix} \text{ and } \mathbf{w} = \begin{bmatrix} 3\\-7\\-4 \end{bmatrix}.$$

Solution: To solve $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{w}$, row reduce to the corresponding augmented matrix

Γ	1	-2	3	3		1	-2	3	3
	0	1	4	-7	$\xrightarrow{R_3+3R_1}$	0	1	4	-7
L	-3	6	-9	-4	$\xrightarrow{R_3+3R_1}$	0	0	0	5

By the third row, $0a_1 + 0a_2 + 0a_3 = 5$, which is impossible. Thus **w** cannot be written as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 .

2. Determine the general solution to the system of equations below.

$$8x_1 + 5x_2 = 5$$

$$2x_1 + x_2 = 3.$$

Solution: To solve the system of equations, set up an augmented matrix, and row reduce.

$$\begin{bmatrix} 8 & 5 & 5\\ 2 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 2 & 1 & 3\\ 8 & 5 & 5 \end{bmatrix} \xrightarrow{R_2 - 4R_1} \begin{bmatrix} 2 & 1 & 3\\ 0 & 1 & -7 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 2 & 0 & 10\\ 0 & 1 & -7 \end{bmatrix}$$
From this, we see $x_2 = -7$ and $x_1 = 5$.