M20580 L.A. and D.E. Quiz 10

1. The solution of the initial value problem

$$
y^{\prime}=\frac{1}{t e^{y}}, \quad y(1)=0
$$

is given implicitly by
a. $e^{y}=\ln t$
b. $e^{y}=\ln t+1$
c. $\frac{t^{2}}{2}=-e^{-y}-\frac{1}{2}$
d. $-e^{-y}=\ln t-1$
e. does not exist

Solution: This ODE is seperable. We have

$$
e^{y} d y=\frac{1}{t} d t
$$

Integrate on both sides, we get $e^{y}=\ln (t)+C$ and then we plug in the initial condition to get $C=1$. Thus b is correct.
2. Find the general solution of the equation $t^{2} y^{\prime}+4 t y=3$.
a. $-\frac{3}{5} t^{-1}+C t^{4}$
b. $t^{-1}+C e^{2 t^{2}}$
c. $t+C t^{4}$
d. $t^{-1}+C t^{-4}$
e. cannot be found explicitly using methods we learned

Solution: The answer is d. We first turn it into standard form:

$$
y^{\prime}+\frac{4}{t} y=\frac{3}{t^{2}} .
$$

The integrating factor is $e^{\int 4 / t d t}=e^{4 \ln t}=t^{4}$. Then

$$
\begin{aligned}
y(t) & =\frac{\int t^{4} 3 / t^{2} d t}{t^{4}} \\
& =\frac{\int 3 t^{2} d t}{t^{4}} \\
& =\frac{t^{3}+C}{t^{4}} \\
& =t^{-1}+C t^{-4}
\end{aligned}
$$

