Math 20580 Tutorial
 Quiz 2

1. Let $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 1 \\ 10 & -5\end{array}\right]$. Determine whether the matrix is invertible and find its inverse if it exists.

Solution: Recall that a 2×2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if $\operatorname{det} M=a d-b c \neq 0$. The inverse matrix is given by

$$
M^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Since $\operatorname{det} A=8-9=-1 \neq 0(1 p t)$, then matrix A is invertible and $A^{-1}=$ $-\left[\begin{array}{cc}4 & -3 \\ -3 & 2\end{array}\right](2 p t)$.
For matrix B, det $B=10-10=0(1 p t)$. Thus, matrix B is not invertible ($1 p t$).
2. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+x_{3} \\
2 x_{1}+x_{3}
\end{array}\right], \text { for any } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3}
$$

Find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$.

Solution: $A=\left[T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right](3 p t)=\left[\begin{array}{lll}0 & 1 & 1 \\ 2 & 0 & 1\end{array}\right](2 p t)$.
If students set $A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$, a 2×3 matrix, and solve for the variables, they are still on the right track(3pt).

