Math 20580 Tutorial Quiz 2

1. Let $A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 \\ 10 & -5 \end{bmatrix}$. Determine whether the matrix is invertible and find its inverse if it exists.

Solution: Recall that a 2×2 matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if det $M = ad - bc \neq 0$. The inverse matrix is given by

$$M^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Since det $A = 8 - 9 = -1 \neq 0(1pt)$, then matrix A is invertible and $A^{-1} = -\begin{bmatrix} 4 & -3 \\ -3 & 2 \end{bmatrix} (2pt)$. For matrix B, det B = 10 - 10 = 0(1pt). Thus, matrix B is not invertible(1pt).

2. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by

$$T\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}x_2+x_3\\2x_1+x_3\end{bmatrix}, \text{ for any } \mathbf{x} = \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} \in \mathbb{R}^3.$$

Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

Solution:
$$A = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} (2pt).$$

If students set $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$, a 2 × 3 matrix, and solve for the variables, they are still on the right track(3pt).