Math 20580 L.A. and D.E. Tutorial Quiz 3

CALCULATORS ARE NOT ALLOWED.

1. True or False: Given three linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 , then any vector in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is in the $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

Solution: 2 points. This is false. Since we assumed the vectors are linearly independent then \mathbf{v}_3 cannot be in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

2. Consider the matrix:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$

- (a) Find a basis for $\operatorname{Col}(A)$.
- (b) Is the vector $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ in Col(A)?
- (c) Is the vector $\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$ in Row(A)?
- (d) Is the vector $\begin{bmatrix} 1\\1\\-5 \end{bmatrix}$ in Null(A)?

Solution: 8 points total, 2 points for each part. Putting A in row echelon form gives:

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 5 & 1 \end{bmatrix}.$$

Thus a basis for $\operatorname{Col}(A)$ come from the first 2 columns for A, i.e the vectors $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} -1\\ 3 \end{bmatrix}$.

For (b) we wish to figure out if there are a, b in \mathbb{R} such that

$$a\begin{bmatrix}1\\2\end{bmatrix}+b\begin{bmatrix}-1\\3\end{bmatrix}=\begin{bmatrix}1\\4\end{bmatrix}.$$

This gives rise to a system of linear equations, and the corresponding augmented matrix can be put in REF as follows:

$$\begin{bmatrix} 1 & -1 & | & 1 \\ 2 & 3 & | & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & | & 1 \\ 0 & 5 & | & 2 \end{bmatrix}.$$

Thus we see this has a unique solution and $\begin{bmatrix} 1\\4 \end{bmatrix}$ is in the column space.

Similarly for (c) we wish to know if

$$a \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} + b \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$$

. This gives us a system of equations

$$\begin{cases} a+2b=1\\ -a+3b=3\\ b=4 \end{cases}$$

whose corresponding augmented matrix can be put in REF as follows:

1	2	1		1	2	1		1	2	1	
-1	3	3	\sim	0	5	4	\sim	0	0	-16	
0	1	4		0	1	4		0	1	4	

So the system is inconsistent and the vector is not in the row space. For (d) we have

$$A\begin{bmatrix}1\\1\\-5\end{bmatrix} = \begin{bmatrix}1-1+0\\2+3-5\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$

and thus the vector is in the null space.