Math 20580 L.A. and D.E. Tutorial Quiz 3

CALCULATORS ARE NOT ALLOWED.

1. True or False: Given three linearly independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}, then any vector in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is in the $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Solution: 2 points. This is false. Since we assumed the vectors are linearly independent then \mathbf{v}_{3} cannot be in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.
2. Consider the matrix:

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 3 & 1
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Col}(A)$.
(b) Is the vector $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ in $\operatorname{Col}(A)$?
(c) Is the vector $\left[\begin{array}{lll}1 & 3 & 4\end{array}\right]$ in $\operatorname{Row}(A)$?
(d) Is the vector $\left[\begin{array}{c}1 \\ 1 \\ -5\end{array}\right]$ in $\operatorname{Null}(A)$?

Solution: 8 points total, 2 points for each part. Putting A in row echelon form gives:

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 5 & 1
\end{array}\right]
$$

Thus a basis for $\operatorname{Col}(A)$ come from the first 2 columns for A, i.e the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$.
For (b) we wish to figure out if there are a, b in \mathbb{R} such that

$$
a\left[\begin{array}{l}
1 \\
2
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

This gives rise to a system of linear equations, and the corresponding augmented matrix can be put in REF as follows:

$$
\left[\begin{array}{cc|c}
1 & -1 & 1 \\
2 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -1 & 1 \\
0 & 5 & 2
\end{array}\right]
$$

Thus we see this has a unique solution and $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ is in the column space.
Similarly for (c) we wish to know if

$$
a\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]+b\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 4
\end{array}\right]
$$

. This gives us a system of equations

$$
\left\{\begin{array}{l}
a+2 b=1 \\
-a+3 b=3 \\
b=4
\end{array}\right.
$$

whose corresponding augmented matrix can be put in REF as follows:

$$
\left[\begin{array}{cc|c}
1 & 2 & 1 \\
-1 & 3 & 3 \\
0 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 5 & 4 \\
0 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 0 & -16 \\
0 & 1 & 4
\end{array}\right]
$$

So the system is inconsistent and the vector is not in the row space.
For (d) we have

$$
A\left[\begin{array}{c}
1 \\
1 \\
-5
\end{array}\right]=\left[\begin{array}{l}
1-1+0 \\
2+3-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and thus the vector is in the null space.

