M20580 L.A. and D.E. Tutorial
 Quiz 4

1. Recall that \mathcal{P}_{n} denotes the vector space of degree at most n. Which of the following is NOT a linear transformation? (Hint: There is only one correct answer)
A. $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$, where $T(p(t))=p^{\prime}(t)$,
B. $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$, where $T(p(t))=t p^{\prime}(t)-3 t^{2}$,
C. $T: \mathcal{P}_{3} \rightarrow \mathbb{R}$, where $T(p(t))=p^{\prime}(2)$,
D. $T: \mathcal{P}_{3} \rightarrow \mathbb{R}$, where $T(p(t))=p(0)$,
E. All of them are linear transformations.

Solution: (2pt) Choice B is not a linear transformation, because it maps zero polynomial to $-3 t^{2}$.
2. Let $p(x)=1-2 x, q(x)=x-x^{2}$, and $r(x)=-2+3 x+x^{2}$ be polynomials in \mathcal{P}_{2}.

Determine whether $s(x)=3-x-5 x^{2}$ is in span $\{p(x), q(x), r(x)\}$.

Solution: The coordinate vectors of these polynomials with respect to the standard basis of \mathcal{P}_{2} are (4pt)

$$
[p(x)]_{s t d}=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right], \quad[q(x)]_{s t d}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad[r(x)]_{s t d}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right], \quad[s(x)]_{s t d}=\left[\begin{array}{c}
3 \\
-1 \\
-5
\end{array}\right] .
$$

The equation $a p(x)+b q(x)+c r(x)=s(x)$ in the unknown a, b, c, gives us a linear system whose augmented matrix is $(1 \mathrm{pt})$

$$
\left[\begin{array}{ccc|c}
1 & 0 & -2 & 3 \\
-2 & 1 & 3 & -1 \\
0 & -1 & 1 & -5
\end{array}\right]
$$

This row reduces to(2 pt)

$$
\left[\begin{array}{ccc|c}
1 & 0 & -2 & 3 \\
0 & 1 & -1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which tell us there are infinitely many solutions. So, $s(x)$ is in $\operatorname{span}\{p(x), q(x), r(x)\}(1 \mathrm{pt})$.

