Name:

M20580 L.A. and D.E. Tutorial Quiz 4

- 1. Recall that \mathcal{P}_n denotes the vector space of degree *at most n*. Which of the following is NOT a linear transformation? (*Hint:* There is only one correct answer)
 - A. $T: \mathcal{P}_3 \to \mathcal{P}_2$, where T(p(t)) = p'(t), B. $T: \mathcal{P}_3 \to \mathcal{P}_3$, where $T(p(t)) = tp'(t) - 3t^2$, C. $T: \mathcal{P}_3 \to \mathbb{R}$, where T(p(t)) = p'(2), D. $T: \mathcal{P}_3 \to \mathbb{R}$, where T(p(t)) = p(0), E. All of them are linear transformations.

Solution: (2pt) Choice B is not a linear transformation, because it maps zero polynomial to $-3t^2$.

2. Let p(x) = 1 - 2x, $q(x) = x - x^2$, and $r(x) = -2 + 3x + x^2$ be polynomials in \mathcal{P}_2 . Determine whether $s(x) = 3 - x - 5x^2$ is in span $\{p(x), q(x), r(x)\}$.

Solution: The coordinate vectors of these polynomials with respect to the standard basis of \mathcal{P}_2 are(4pt)

$$[p(x)]_{std} = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \quad [q(x)]_{std} = \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}, \quad [r(x)]_{std} = \begin{bmatrix} -2\\ 3\\ 1 \end{bmatrix}, \quad [s(x)]_{std} = \begin{bmatrix} 3\\ -1\\ -5 \end{bmatrix}.$$

The equation ap(x) + bq(x) + cr(x) = s(x) in the unknown a, b, c, gives us a linear system whose augmented matrix is(1pt)

	$\begin{bmatrix} 1 & 0 & -2 & 3 \\ -2 & 1 & 3 & -1 \\ 0 & -1 & 1 & -5 \end{bmatrix}.$
This row reduces to(2pt)	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

which tell us there are infinitely many solutions. So, s(x) is in span $\{p(x), q(x), r(x)\}(1pt)$.