M20580 L.A. and D.E. Tutorial Quiz 5

1. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has out puts

$$
T\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \quad T\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Find $T\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

Solution: The augmented matrix $\left[\begin{array}{ll|l}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$ has REF $\left[\begin{array}{cc|c}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$.Thus,

$$
\left[\begin{array}{l}
3 \\
1
\end{array}\right]=-\left[\begin{array}{l}
1 \\
3
\end{array}\right]+2\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Thus

$$
T\left[\begin{array}{l}
3 \\
1
\end{array}\right]=-T\left[\begin{array}{l}
1 \\
3
\end{array}\right]+2 T\left[\begin{array}{l}
2 \\
2
\end{array}\right]=-\left[\begin{array}{l}
2 \\
4
\end{array}\right]+2\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
$$

2. Let $B=\left\{1-t+t^{2}, t-t^{2}, t+t^{2}\right\}$ be a basis for the space \mathcal{P}_{2} of polynomials of degree at most 2 . Find the coordinate vector $[p]_{B}$ of $p(t)=2+t+3 t^{2}$.

Solution: We have that the augmented matrix in terms of the standard basis $\left\{1, t, t^{2}\right\}$ is

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 3
\end{array}\right]
$$

Putting in RREF gives

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Hence $[p]_{B}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$, i.e. $p(t)=2\left(1-t+t^{2}\right)+1\left(t-t^{2}\right)+2\left(t+t^{2}\right)$.

