MATH 20580 L.A. and D.E. Tutorial Quiz 6

CALCULATORS ARE NOT ALLOWED

1. Find the determinant of the following matrix $A=\left(\begin{array}{cccc}1 & 2 & 0 & -1 \\ 2 & 2 & 1 & 4 \\ 0 & 0 & -1 & 1 \\ 1 & 3 & 0 & -3\end{array}\right)$. Hint: find the row/column with most 0's first.
A. -5
B. -3
C. 5
D. 3
E. 0

Solution: Laplace expansion along the 3 rd column gives $\operatorname{det}(A)=(0) C_{13}+(1) C_{23}+$ $(-1) C_{33}+(0) C_{43}$.

Now computing the cofactors we have

$$
C_{23}=(-1)^{2+3} M_{23}=-M_{23}=-\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 0 & 1 \\
1 & 3 & -3
\end{array}\right)=(-1)(-1(3-2))=1
$$

Likewise, the other nonzero cofactor C_{33} is computed

$$
\begin{gathered}
C_{33}=(-1)^{3+3} M_{33}=M_{33}=\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 2 & 4 \\
1 & 3 & -3
\end{array}\right) \\
=1(2(-3)-(3)(4))-(2)(2(-3)-(4)(1))+(-1)((2)(3)-(2)(1))=-18+20-4=-2
\end{gathered}
$$

And so we have $\operatorname{det}(A)=+(1)(1)+(-1)(-2)=3$. Answer choice D.
2. Use Cramer's rule to solve the system

$$
\left[\begin{array}{cc}
1 & -1 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

(a) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2.5 \\ 0.5\end{array}\right]$
(b) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1.5 \\ 0.5\end{array}\right]$
(c) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}-1.5 \\ -0.5\end{array}\right]$

Solution: Answer choice (b) is correct.
The determinant of the matrix is 2 . Replacing the first column with the solution vector we obtain the matrix $\left[\begin{array}{cc}1 & -1 \\ -1 & 4\end{array}\right]$ which has determinant 3 . Hence $x_{1}=3 / 2$. Replacing the second column with the solution vector we obtain the matrix $\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]$ which has determinant 1 . Hence $x_{2}=1 / 2$.

