Math 20580 L.A. and D.E. Tutorial
 Quiz 7

CALCULATORS ARE NOT ALLOWED

1. Which of the following subset of \mathbb{R}^{3} is an orthonormal set?
A. $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$
B. $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
C. $\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$
D. $\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]\right\}$
E. $\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$.

Solution: We need to check for each choice that the dot product of the two vectors is 0 (orthogonality) and that the norm (length) of each vector in the set is 1 (normalization).
The sets in Choices A and Choice E are not even orthogonal sets. The ones in Choices B and D are orthogonal sets but not orthonormal since they contain a vector whose norm is not 1 .

Only the set in Choice \mathbf{C} satisfies both conditions so it is the answer.
2. What is projection $\operatorname{proj}_{W} \mathbf{v}$ of the vector $\mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ on the plane $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$? (Hint: To save your calculation, look for which pairs of vectors that are already orthogonal).
A. $\left[\begin{array}{l}3 \\ 6 \\ 6\end{array}\right]$
B. $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
C. $\frac{1}{3}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$
D. $\frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$
E. $-\frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$

Solution: Answer choice D is correct.
Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$. Then $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and note that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ so we can use the orthogonal projection formula. Also $\mathbf{v} \cdot \mathbf{v}_{2}=0$, so $\boldsymbol{p r o j}_{\mathbf{v}_{2}} \mathbf{v}=\mathbf{0}$. Hence,

$$
\operatorname{proj}_{W} \mathbf{v}=\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{v}+\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\mathbf{0}=\frac{1 \cdot 1+2 \cdot(-1)+2 \cdot 2}{1^{2}+2^{2}+2^{2}}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

