M20580 L.A. and D.E.

Quiz 8

1. Find an orthonormal basis for

$$
\operatorname{span}\left\{x_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], x_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\} .
$$

Solution: Apply Gram-Schmidt. Our first basis element is

$$
e_{1}=\frac{1}{\sqrt{1+4}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Next note that $e_{1} \cdot x_{2}=\frac{1}{\sqrt{5}}(3+2)=5 / \sqrt{5}=\sqrt{5}$ and thus the second basis element is

$$
v_{2}=x_{2}-\left(e_{1} \cdot x_{2}\right) e_{1}=x_{2}-\sqrt{5} e_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] .
$$

Normalizing gives

$$
e_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right] .
$$

So $\left\{e_{1}, e_{2}\right\}$ give an orthonormal basis for $\operatorname{span}\left\{x_{1}, x_{2}\right\}$.
2. Find a basis for the orthogonal complement of a subspace V of \mathbb{R}^{3} given by

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right\} .
$$

Solution: If A is a matrix obtained by concatenating basis columns of V, then $V^{\perp}=\operatorname{null}\left(A^{T}\right)$. So,

$$
A^{T}=\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -6
\end{array}\right]
$$

From the last RREF, we see that

$$
V^{\perp}=\operatorname{null}\left(A^{T}\right)=\operatorname{span}\left\{\left[\begin{array}{c}
-3 \\
6 \\
1
\end{array}\right]\right\} .
$$

