M20580 L.A. and D.E. Tutorial
 Worksheet 10

1. Determine whether the statements are true or false, and justify your answer.

- If A is a $m \times n$ the $Q R$ factorization of A always exists.
- If $A x=b$ is a consistent linear system, then $A^{T} A x=A^{T} b$ is also consistent, with the same solution.
- If $A x=b$ is an inconsistent linear system, then $A^{T} A x=A^{T} b$ is also inconsistent.

Solution:

- False. It is a necessary additional hypothesis that the columns of A are linearly independent.
- True. A solution to $A^{T} A x=A^{T} b$ is a least squares solution to $A x=b$. This is the equivalent to finding the projection of b onto the column space of A and is thus always consistent.
- False. Since again $A^{T} A x=A^{T} b$ is always consistent.

2. Consider the matrices

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
2 & 3 \\
-1 & 2 \\
4 & -1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
17 \\
11 \\
6 \\
3
\end{array}\right]
$$

(a) Find the least squares solution \bar{x} to the equation $A x=\mathbf{b}$.
(b) Find the vector in the column space of A which is closest to \mathbf{b}. (Hint: recall that when the columns for A are linearly independent, then $\operatorname{proj}_{\operatorname{col}(A)} v=A\left(A^{T} A\right)^{-1} A^{T} v$ which from (a) is $A \bar{x}$.)

Solution: (a) Recall that if \bar{x} is the least squares solution, then $A^{T} A \bar{x}=A^{T} b$.
We first compute

$$
A^{T} A=\left[\begin{array}{cc}
22 & 0 \\
0 & 14
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{l}
11 \\
42
\end{array}\right]
$$

Solving for $A^{T} A \bar{x}=A^{T} b$ gives

$$
\bar{x}=\left[\begin{array}{c}
1 / 2 \\
3
\end{array}\right]
$$

(b) Note that

$$
\left[\begin{array}{c}
-1 \\
2 \\
-1 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
3 \\
2 \\
-1
\end{array}\right]=0+6-2-4=0
$$

so the two columns for A are already orthogonal. Thus $\operatorname{proj}_{\text {col }(A)} \mathbf{b}=\operatorname{proj}_{c_{1}} \mathbf{b}+\operatorname{proj}_{c_{2}} \mathbf{b}$ where c_{1} and c_{2} are the two columns of A as column vectors.

$$
\begin{aligned}
\operatorname{proj}_{\operatorname{col}(A)} \mathbf{b} & =\operatorname{proj}_{c_{1}} \mathbf{b}+\operatorname{proj}_{c_{2}} \mathbf{b}=\frac{c_{1} \cdot \mathbf{b}}{c_{1} \cdot c_{1}} c_{1}+\frac{c_{2} \cdot \mathbf{b}}{c_{2} \cdot c_{2}} c_{2} \\
& =\frac{11}{22} c_{1}+\frac{42}{14} c_{2} \\
& =\frac{1}{2} c_{1}+3 c_{2} \\
& =\left[\begin{array}{c}
-1 / 2 \\
10 \\
11 / 2 \\
-1
\end{array}\right] .
\end{aligned}
$$

As per the hint we see that this is the same thing as $A \bar{x}$.
3. Consider the matrices

$$
A=\left[\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
2 \sqrt{2} \\
\sqrt{2} \\
-\sqrt{2}
\end{array}\right]
$$

(a) Find the $Q R$ factorization for A.
(b) Use the $Q R$ factorization for A to find the least squares solution to $A x=\mathbf{b}$.

Solution: (a) Compute the $Q R$ factorization as

$$
Q R=\left[\begin{array}{cc}
1 / \sqrt{2} & 2 / 3 \\
0 & 1 / 3 \\
-1 / \sqrt{2} & 2 / 3
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 3
\end{array}\right] .
$$

(b) Next recall that the least squares solution \bar{x} is given by $R^{-1} Q^{T} \mathbf{b}$. Using this we compute:

$$
\bar{x}=\frac{1}{3 \sqrt{2}}\left[\begin{array}{cc}
3 & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
2 / 3 & 1 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{c}
2 \sqrt{2} \\
\sqrt{2} \\
-\sqrt{2}
\end{array}\right]=\frac{1}{3 \sqrt{2}}\left[\begin{array}{l}
9 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{2} \\
\sqrt{2} / 3
\end{array}\right]
$$

4. Find an explicit solution for the separable differential equation

$$
3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y\left(x+4 x^{2}\right)
$$

with the initial condition $y(1)=2$.

Solution: First separate the variables:

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{3 x}+\frac{4}{3} .
$$

Next we integrate with respect to x to get:

$$
\ln (y)=\frac{1}{3} \ln (x)+\frac{4 x}{3}+C .
$$

Exponentiating both sides gives

$$
y=e^{1 / 3 \ln (x)+4 / 3 x+C} .
$$

Split up the right hand side as $e^{1 / 3 \ln (x)} e^{4 / 3 x+C}$ and observe that

$$
e^{1 / 3 \ln (x)}=\left(e^{\ln (x)}\right)^{1 / 3}=x^{1 / 3}=\sqrt[3]{x}
$$

Thus we can simplify this to get

$$
y=\sqrt[3]{x} e^{4 / 3 x+C}
$$

Plugging in $x=1$ and $y=2$ gives $2=e^{4 / 3+C}$. Taking log of both sides gives $\ln (2)=4 / 3+C$ and thus $C=\ln (2)-4 / 3$. Putting it all together we obtain

$$
y=\sqrt[3]{x} e^{4 / 3 x+\ln (2)-4 / 3}
$$

Again we can simplify by observing that

$$
e^{4 / 3 x+\ln (2)-4 / 3}=e^{\ln (2)} e^{4 / 3 x-4 / 3}=2 e^{4 / 3 x-4 / 3} .
$$

Thus our final answer is

$$
y=2 \sqrt[3]{x} e^{4 / 3 x-4 / 3}
$$

