## M20580 L.A. and D.E. Tutorial Worksheet 11

1. (a) Solve the separable differential equation: $d x+e^{4 x} d y=0$
(b) Solve the linear differential equation: $y^{\prime}+3 x^{2} y=x^{2}$.
(c) Check if the differential equation is exact, then solve: $(2 x-1) d x+(3 y+7) d y=0$

## Solution:

(a) From $d y=-e^{-4 x} d x$ we obtain $y=\frac{1}{4} e^{-4 x}+c$.
(b) An integrating factor is $e^{\int 3 x^{2} d x}=e^{x^{3}}$ so that $\frac{d}{d x}\left[e^{x^{3}} y\right]=x^{2} e^{x^{3}}$ and $y=$ $\frac{1}{3}+c e^{-x^{3}}$ for $-\infty<x<\infty$.
(c) Let $M=2 x-1$ and $N=3 y+7$ so that $M_{y}=0=N_{x}$. From $f_{x}=2 x-1$ we obtain $f=x^{2}-x+h(y), h^{\prime}(y)=3 y+7$, and $h(y)=\frac{3}{2} y^{2}+7 y$. A solution is $x^{2}-x+\frac{3}{2} y^{2}+7 y=c$.
2. For each of the following differential equations, first check if it is linear, then solve it using an appropriate method.
(a) $\frac{d y}{d t}=t y^{2} \cos t, \quad y(0)=1$
(b) $t \frac{d y}{d t}=t^{2}+y, \quad y(1)=-2 \quad$ for $t>0$,
(c) $y^{\prime}=2 t y+3 t^{2} e^{t^{2}}$,
(d) $t^{2} \frac{d y}{d t}+t y=1$, assuming $t>0$.

## Solution:

(a) The DE is not linear. Using the method of separation of variables, we have:

$$
\begin{aligned}
& \frac{d y}{d t}=t y^{2} \cos t \\
\Longrightarrow & \frac{d y}{y^{2}}=t \cos t d t \\
\Longrightarrow & \int y^{-2} d y=\int t \cos t d t
\end{aligned}
$$

Integration by parts:

$$
\begin{gathered}
u=t \Longrightarrow d u=d t \\
d v=\cos t d t \Longrightarrow v=\sin t \\
\Longrightarrow \frac{y^{-1}}{-1}=t \sin t-\int \sin t d t \\
\Longrightarrow-y^{-1}=t \sin t-(-\cos t)+C \\
\Longrightarrow-y^{-1}=t \sin t+\cos t+C .
\end{gathered}
$$

Since $y(0)=1$, we have

$$
-1^{-1}=0 \sin 0+\cos 0+C \Longrightarrow \quad C=-1^{-1}-\cos 0=-1-1=-2
$$

Therefore,

$$
\begin{aligned}
& -y^{-1}=t \sin t+\cos t-2 \\
\Longrightarrow & y^{-1}=2-t \sin t-\cos t \\
\Longrightarrow & y=\frac{1}{2-t \sin t-\cos t}
\end{aligned}
$$

(b) The DE is linear. We have

$$
\begin{aligned}
& t \frac{d y}{d t}=t^{2}+y \\
\Longrightarrow & t \frac{d y}{d t}-y=t^{2} \\
\Longrightarrow & \frac{d y}{d t}-t^{-1} \cdot y=t
\end{aligned}
$$

Multiplying both sides of the equation by the following integrating factor

$$
\begin{array}{lr}
I=e^{\int-t^{-1} d t}=e^{-\ln |t|}=e^{-\ln t} & (|t|=t \text { as } t>0) \\
I=t^{-1} . & \text { (Note: } \left.e^{-\ln x} \text { is NOT }-x\right)
\end{array}
$$

We then have

$$
\begin{aligned}
& t^{-1} \frac{d y}{d t}-t^{-2} y=1 \\
\Longrightarrow & \left(t^{-1} y\right)^{\prime}=1 \\
\Longrightarrow & t^{-1} y=\int 1 \cdot d t \\
\Longrightarrow & t^{-1} y=t+C \\
\Longrightarrow & y=t^{2}+C t .
\end{aligned}
$$

Since $y(1)=-2$, we have

$$
-2=1^{2}+C \cdot 1 \Longrightarrow C=-2-1=-3 .
$$

Therefore, $y=t^{2}-3 t$.
(c) The DE is linear. We have

$$
\begin{aligned}
y^{\prime}=2 t y+3 t^{2} e^{t^{2}} \\
\Longrightarrow y^{\prime}-2 t \cdot y=3 t^{2} e^{t^{2}}
\end{aligned}
$$

We multiply both sides of the equation by the following integrating factor

$$
I=e^{\int(-2 t) d t}=e^{-t^{2}}
$$

We then have

$$
\begin{aligned}
& y^{\prime} e^{-t^{2}}-2 t e^{-t^{2}} y=3 t^{2} \\
\Longrightarrow & \left(y e^{-t^{2}}\right)^{\prime}=3 t^{2} \\
\Longrightarrow & y e^{-t^{2}}=\int 3 t^{2} d t \\
\Longrightarrow & y e^{-t^{2}}=t^{3}+C \\
& y=e^{t^{2}}\left(t^{3}+C\right),
\end{aligned}
$$

where $C$ is an arbitrary constant.
(d) The DE is linear. We have

$$
\begin{gathered}
t^{2} \frac{d y}{d t}+t y=1 \\
\Longrightarrow \\
\frac{d y}{d t}+t^{-1} \cdot y=t^{-2} .
\end{gathered}
$$

We multiply both sides of the equation by the following integrating factor

$$
I=e^{\int t^{-1} d t}=e^{\ln |t|}=|t|=t . \quad(|t|=t \text { for } t>0)
$$

We have

$$
\begin{aligned}
& t \frac{d y}{d t}+y=t^{-1} \\
\Longrightarrow & (t y)^{\prime}=t^{-1} \\
\Longrightarrow & t y=\int t^{-1} d t \\
\Longrightarrow & t y=\ln |t|+C \\
\Longrightarrow & t y=\ln t+C \\
& y=t^{-1} \ln t+C t^{-1} .
\end{aligned} \quad(|t|=t \text { for } t>0)
$$

3. Solve the given initial-value problem

$$
x d x+\left(x^{2} y+4 y\right) d y=0, \quad y(4)=0
$$

This ODE is not exact, but you can make it exact by first finding an integrating factor.

Solution: We note that $\left(M_{y}-N_{x}\right) / N=2 x /\left(4+x^{2}\right)$, so an integrating factor is $e^{-2 \int x d x /\left(4+x^{2}\right)}=1 /\left(4+x^{2}\right)$.
Let $M=x /\left(4+x^{2}\right)$ and $N=\left(x^{2} y+4 y\right) /\left(4+x^{2}\right)=y$, so that $M_{y}=0=N_{x}$. From $f_{x}=x /\left(4+x^{2}\right)$ we obtain $f=\frac{1}{2} \ln \left(4+x^{2}\right)+h(y), h^{\prime}(y)=y$, and $h(y)=\frac{1}{2} y^{2}$. A solution of the differential equation is

$$
\frac{1}{2} \ln \left(4+x^{2}\right)+\frac{1}{2} y^{2}=c .
$$

Multiplying both sides by 2 the last equation can be written as $e^{y^{2}}\left(x^{2}+4\right)=c_{1}$. Using the initial condition $y(4)=0$ we see that $c_{1}=20$. A solution of the initial-value problem is $e^{y^{2}}\left(x^{2}+4\right)=20$.

