M20580 L.A. and D.E. Tutorial Worksheet 12

1. Solve the following homogeneous linear differential equations with constant coefficient.
(a) $y^{\prime \prime}-8 y^{\prime}+16 y=0$, with initial values $y(0)=1 / 4, \quad y^{\prime}(0)=0$.
(b) $y^{\prime \prime}+y^{\prime}-6 y=0$.
(c) $y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0$.

Solution: (a) The auxiliary equation is $m^{2}-8 m+16=(m-4)^{2}$. Thus we have a repeated real root, and we obtain the general solution

$$
y=c_{1} e^{4 x}+c_{2} x e^{4 x} .
$$

Since $y(0)=1 / 4$ we see that $c_{1}=1 / 4$. We find

$$
y^{\prime}=4 c_{1} e^{4 x}+4 c_{2} x e^{4 x}+c_{2} e^{4 x}
$$

Since $y^{\prime}(0)=0$ we see that $4 c_{1}+c_{2}=0$ and thus $c_{2}=-1$. So our unique solution is

$$
y=\frac{1}{4} e^{4 x}-x e^{4 x}
$$

(b) The auxiliary equation is $m^{2}+m-6=(m-2)(m+3)$. Thus the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

(c) The auxiliary equation is $m^{3}-3 m^{2}+2 m=m\left(m^{2}-3 m+2\right)=m(m-1)(m-2)$. Since these are distinct roots a general solution is given by

$$
y=c_{1}+c_{2} e^{x}+c_{3} e^{2 x}
$$

2. Each of the following is a differential equation and a set of solutions for them. Determine whether they are linearly independent by calculating their Wronskian.
(a) $y^{\prime \prime \prime}-y^{\prime \prime}=0$, with solutions $\{0, x+1\}$.
(b) $y^{\prime \prime \prime}=0$, with solutions $\left\{1, x, x^{2}\right\}$.
(c) $y^{\prime \prime}-10 y^{\prime}+16 y=0$, with solutions $\left\{e^{2 x}, e^{8 x}\right\}$.

Solution: The Wronskian for each part is (a) 0, (b) 2, and (c) $6 e^{10 x}$. Thus the solutions for (a) are linearly dependent, while the others are independent since they are not identically zero.
3. A tank contains 180 liters of fluid in which 20 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$; the well-mixed solution is pumped out at a rate of $4 \mathrm{~L} / \mathrm{min}$. Find the number $y(t)$ of grams of salt in the tank at time t.

Solution: We the formula for the volume is $180+(3-4) t=180-t$. Thus the concentration of salt at time t is $\frac{y(t)}{180-t}$. We thus have

$$
\begin{aligned}
\frac{d y}{d t} & =\text { natural increase rate }- \text { rate of decrease } \\
& =3-4 \frac{y(t)}{180-t}
\end{aligned}
$$

This is a first order linear differential equation. Solving gives

$$
\begin{aligned}
y(t) & =(t-180)^{4}\left((180-t)^{-3}+C\right) \\
& =180-t+C(t-180)^{4} .
\end{aligned}
$$

Using the given initial condition $y(0)=20$ we see that

$$
\begin{aligned}
20 & =180+C(180)^{4} \\
\Longrightarrow C & =\frac{-160}{180^{4}}
\end{aligned}
$$

4. The function $y_{1}(x)=x^{2} \cos (\ln x)$ is a solution of the given differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 .
$$

Use reduction of order or the formula

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{\int-P(x) d x}}{y_{1}^{2}(x)} d x
$$

to find a second solution $y_{2}(x)$ that is linearly independent with $y_{1}(x)$.

Solution: First obtain standard form of the second order differential equation:

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{5}{x^{2}} y=0,
$$

hence $P(x)=\frac{-3}{x}$. Now use the formula:

$$
\begin{gathered}
y_{2}(x)=y_{1}(x) \int \frac{e^{\int-P(x) d x}}{y_{1}^{2}(x)} d x \\
=x^{2} \cos (\ln x) \int \frac{e^{\int \frac{3}{x} d x}}{\left(x^{2} \cos (\ln x)\right)^{2}} d x \\
=x^{2} \cos (\ln x) \int \frac{x^{3}}{\left(x^{2} \cos (\ln x)\right)^{2}} d x \\
=x^{2} \cos (\ln x) \int \frac{1}{x \cos ^{2}(\ln x)} d x \\
=x^{2} \cos (\ln x) \int \frac{1}{\cos ^{2}(u)} d u \\
=x^{2} \cos (\ln x)(\tan (\ln x)) \\
=x^{2} \sin (\ln x)
\end{gathered}
$$

5. Suppose a population of rabbits on a meadow initially has the size 10,000 and natural increase of 10% of the population per year. A pack of 20 wolves just migrated in recently and as a result, each wolf hunts for two rabbits each month for food. Suppose the population of wolves grows by 2 wolves/year. Set up a differential equation describing the population of rabbits over time. Will the population of rabbits eventually flourish, stay the same, or die out?

Solution: Let $y(t)$ denote the population of rabbits after t years, then

$$
\frac{d y}{d t}=\text { natural increase rate }- \text { rate of decrease }
$$

In this case, the decreasing rate of rabbits are determined by the hunting rate of the wolves. After t years, the wolf population is $20+2 t$, so the rabbit population additionally decreases by a rate of $2 \times 12 \times(20+2 t)=48(t+10)$. Hence, we have

$$
\frac{d y}{d t}=0.1 y-48(t+10)
$$

This is just a 1st order linear DE, solving which we get

$$
y(t)=48(10 t+200)+C e^{0.1 t}
$$

With the initial condition $y(0)=10,000$, we have $C=400$. Hence

$$
y(t)=480 t+9600+400 e^{0.1 t} \text {. }
$$

Since $y^{\prime}(t)=480+40 e^{0.1 t}>0$, the population of rabbits will keep increasing so it will eventually flourish.

